00756nam--2200289---450 99000583993020331620220601120947.0000583993USA01000583993(ALEPH)000583993USA0100058399320130507d1971----km-y0itay50------bafreBE||||||||001yySoleilsRaymond QuinotBruxellesV.D.H.197175 p.ill.22 cmQUINOT,Raymond593950ITsalbcISBD990005839930203316XV.4.A. 2682237691 L.M.XV.4.A.00320174BKFFMARIAS9020130507USA011556Soleils1087347UNISA03654nam 22005895 450 991025407220332120200702165500.03-319-27978-510.1007/978-3-319-27978-7(CKB)3710000000717740(DE-He213)978-3-319-27978-7(MiAaPQ)EBC6310731(MiAaPQ)EBC5587959(Au-PeEL)EBL5587959(OCoLC)951214711(PPN)194077225(EXLCZ)99371000000071774020160523d2016 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierA Fixed-Point Farrago /by Joel H. Shapiro1st ed. 2016.Cham :Springer International Publishing :Imprint: Springer,2016.1 online resource (XIV, 221 p. 8 illus.) Universitext,0172-59393-319-27976-9 Includes bibliographical references and index.1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov–Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov–Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume’s ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer’s theorem and its application to John Nash’s work; the third applies Brouwer’s theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll–Nardzewski surrounding fixed points for families of affine maps.Universitext,0172-5939Mathematical analysisAnalysis (Mathematics)Numerical analysisAnalysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12007Numerical Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M14050Mathematical analysis.Analysis (Mathematics).Numerical analysis.Analysis.Numerical Analysis.515.7248Shapiro Joel Hauthttp://id.loc.gov/vocabulary/relators/aut60142MiAaPQMiAaPQMiAaPQBOOK9910254072203321Fixed-point Farrago1523051UNINA01272nam1 22003373i 450 VAN0029779420250904105637.930978-30-303-5708-520250904d2020 |0itac50 baengCH|||| |||||i e nncˆ2: ‰System DesignGiancarlo Genta, Lorenzo Morello2. edChamSpringer2020XXXI, 962 p.24 cm001VAN002977852001 <<The >>Automotive ChassisCHChamVANL001889GentaGiancarloVANV0438117967MorelloLorenzoVANV252226502718Springer <editore>VANV108073650ITSOL20250905RICAhttps://link.springer.com/book/10.1007/978-3-030-35709-2#bibliographic-informationhttps://link.springer.com/book/10.1007/978-3-030-35709-2#bibliographic-informationBIBLIOTECA DEL DIPARTIMENTO DI INGEGNERIAIT-CE0100VAN05VAN00297794BIBLIOTECA DEL DIPARTIMENTO DI INGEGNERIA05PREST W 224 05UBI2396 20250904 System Design4428958UNICAMPANIA