01491nam2-2200445---450-99000326759020331620110526104005.088-14-13235-6000326759USA01000326759(ALEPH)000326759USA0100032675920090610-2007----km-y0itay0103----baitaIT||||||||001yy<3:> Riforme del processo civile, varie, ricordi di guristiVirgilio AndrioliMilanoGiuffrè2007VI, P. 1455-202524 cmUniversità di Firenze39.3Fondazione Piero Calamandrei2001Università di FirenzeFondazione Piero Calamandrei0010003267532001Processo civileBNCF347.4705ANDRIOLI,Virgilio35973ITsalbcISBD990003267590203316XXIV.3. Coll. 26/ 26 3 (X 7 I 39/3)59880 G.XXIV.3. Coll. 26/ 26 3 (X 7 I)00226098IV 398/3DIRCEBKGIUDIRCEIANNONE9020090610USA011022IANNONE9020090610USA011024IANNONE9020090610USA011128IANNONE9020090610USA011131RSIAV29020100819USA010924DIRCE9020110526USA011040Riforme del processo civile, varie, ricordi di guristi66482UNISA03767nam 22007815 450 991074321360332120251113203744.0981-16-8383-2981-16-8382-4981-16-8383-210.1007/978-981-16-8383-1(MiAaPQ)EBC6926820(Au-PeEL)EBL6926820(CKB)21403472000041(PPN)26152447X(OCoLC)1304243896(DE-He213)978-981-16-8383-1(EXLCZ)992140347200004120220315d2022 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFundamentals of Analysis with Applications /by Atul Kumar Razdan, V. Ravichandran1st ed. 2022.Singapore :Springer Nature Singapore :Imprint: Springer,2022.1 online resource (491 pages)Mathematics and Statistics SeriesPrint version: Razdan, Atul Kumar Fundamentals of Analysis with Applications Singapore : Springer Singapore Pte. Limited,c2022 9789811683824 Includes bibliographical references and index.1. Sets, Functions and Cardinality -- 2. The Real Numbers -- 3. Sequence and Series of Numbers -- 4. Analysis on R -- 5. Topology of the Real Line -- 6. Metric Spaces -- 7. Continuity and Differentiability -- 8. Sequences and Series of Functions -- 9. Lebesgue Integration -- 10. Fourier Series.This book serves as a textbook in real analysis. It focuses on the fundamentals of the structural properties of metric spaces and analytical properties of functions defined between such spaces. Topics include sets, functions and cardinality, real numbers, analysis on R, topology of the real line, metric spaces, continuity and differentiability, sequences and series, Lebesgue integration, and Fourier series. It is primarily focused on the applications of analytical methods to solving partial differential equations rooted in many important problems in mathematics, physics, engineering, and related fields. Both the presentation and treatment of topics are fashioned to meet the expectations of interested readers working in any branch of science and technology. Senior undergraduates in mathematics and engineering are the targeted student readership, and the topical focus with applications to real-world examples will promote higher-level mathematical understanding for undergraduates in sciences and engineering.Mathematics and Statistics SeriesMathematical analysisFunctions of real variablesSet theorySequences (Mathematics)Algebraic topologyFourier analysisAnalysisReal FunctionsSet TheorySequences, Series, SummabilityAlgebraic TopologyFourier AnalysisMathematical analysis.Functions of real variables.Set theory.Sequences (Mathematics)Algebraic topology.Fourier analysis.Analysis.Real Functions.Set Theory.Sequences, Series, Summability.Algebraic Topology.Fourier Analysis.780Razdan Atul Kumar1426682Raviccantiran̲ Vikkiravāṇṭi Vi.MiAaPQMiAaPQMiAaPQBOOK9910743213603321Fundamentals of analysis with applications3558783UNINA