01160nam--2200373---450-99000278041020331620060714101613.088-13-19794-2000278041USA01000278041(ALEPH)000278041USA0100027804120060714d1996----km-y0itay0103----baitaIT||||||||001yyAlberto Ceccherelliuno schema per l'interpretazione della sua operaFabrizio BertiPadovaCedam1996XI, 224 p.24 cmSerie storicaDipartimento di scienze aziendali dell'Universita degli studi di Firenze2001Serie storicaDipartimento di scienze aziendali dell'Universita degli studi di Firenze2001001-------2001Ceccherelli,Alberto657.092BERTI,Fabrizio116291ITsalbcISBD990002780410203316P07 601DISTRABKDISTRADISTRA19020060714USA011016Alberto Ceccherelli996669UNISA03520nam 2200673 450 99646662450331620220420122913.03-540-68513-810.1007/BFb0093175(CKB)1000000000437385(SSID)ssj0000325848(PQKBManifestationID)12118500(PQKBTitleCode)TC0000325848(PQKBWorkID)10264733(PQKB)10592690(DE-He213)978-3-540-68513-5(MiAaPQ)EBC5591936(MiAaPQ)EBC6691590(Au-PeEL)EBL5591936(OCoLC)1066194463(Au-PeEL)EBL6691590(PPN)155197592(EXLCZ)99100000000043738520220420d1996 uy 0engurnn|008mamaatxtccrProbabilistic models for nonlinear partial differential equations lectures given at the 1st session of the Centro internazionale matematico estivo (C.I.M.E.) held in Montecatini Terme, Italy, May 22-30, 1995 /C. Graham, D. Talay, L. Tubaro (editors)1st ed. 1996.Berlin, Germany ;New York, New York :Springer,[1996]©19961 online resource (X, 302 p.) C.I.M.E. Foundation Subseries ;1627Bibliographic Level Mode of Issuance: Monograph3-540-61397-8 Includes bibliographical references.Weak convergence of stochastic integrals and differential equations -- Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models -- Kinetic limits for stochastic particle systems -- A statistical physics approach to large networks -- Probabilistic numerical methods for partial differential equations: Elements of analysis -- Weak convergence of stochastic integrals and differential equations II: Infinite dimensional case.The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.C.I.M.E. Foundation Subseries ;1627ConvergenceCongressesDifferential equations, NonlinearNumerical solutionsCongressesStochastic partial differential equationsNumerical solutionsCongressesConvergenceDifferential equations, NonlinearNumerical solutionsStochastic partial differential equationsNumerical solutions519.2Graham C(Carl),Talay D(Denis),Tubaro L(Luciano),1947-Centro internazionale matematico estivo.MiAaPQMiAaPQMiAaPQBOOK996466624503316Probabilistic models for nonlinear partial differential equations2834691UNISA