01080nam--2200373---450-99000224750020331620100111114144.0000224750USA01000224750(ALEPH)000224750USA0100022475020041207d1977----km-y0itay0103----baitaIT||||||||001yy<<L'>>infallibilitàHans Kungprefazione di Rosino GibelliniMilanoMondadori1977407 p.24 cmSaggi862001Saggi862001001-------2001KÜNG,Hans390413GIBELLINI,RosinoITsalbcISBD990002247500203316XXX.A. Coll. 98/ 9 (Coll. AQK 86)44446 G.XXX.A. Coll. 98/ 9 (Coll. AQK)00211682BKGIUSIAV31020041207USA011537PATRY9020070620USA011040RSIAV59020100111USA011141Infallibilità221753UNISA01209nam--2200385---450-99000268585020331620070125172333.03-89586-864-7000268585USA01000268585(ALEPH)000268585USA0100026858520051115d2004----km-y0itay50------baitaDEa|||z|||001yyManuale di pronunciaitaliana, inglese, francese, tedesca, spagnola, portoghese, russa, araba, hindi, cinese, giapponese, esperantaLuciano CanepariMünchen [etc.]Lincom Europa2004XIV, 418 p.ill.24 cmLincom textbooks linguistics42001Lincom textbooks linguistics42001001------2001Fonologia414.8CANEPARI,Luciano79270ITsalbcISBD990002685850203316IV.2. 1602(XII B 370)183188 L.M.XII B00180863BKUMAPECORARO9020051115USA011654COPAT69020070125USA011723Manuale di pronuncia1003209UNISA02844nam 2200529 450 991055423090332120231110215732.03-11-037805-110.1515/9783110378054(CKB)5590000000532562(DE-B1597)429854(DE-B1597)9783110378054(MiAaPQ)EBC6701545(Au-PeEL)EBL6701545(OCoLC)1262308457(EXLCZ)99559000000053256220220430d2021 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierSingular tracesVolume 1, Theory /Steven Lord, Fedor Sukochev, Dmitriy Zanin2nd corr. and exten. editionBerlin ;Boston, MA :Walter de Gruyter GmbH,[2021]©20211 online resource (XXX, 386 p.)De Gruyter Studies in Mathematics ;46/13-11-037779-9 Frontmatter -- Preface -- Notations -- Contents -- Introduction -- Part I: Preliminary material -- 1 What is a singular trace? -- 2 Singular values and submajorization -- Part II: Theory of traces on ideals of ℒ ( H) -- Introduction -- 3 Calkin correspondence for norms and traces -- 4 Pietsch correspondence -- 5 Spectrality of traces -- Part III: Formulas for traces on ℒ1,∞ -- Introduction -- 6 Dixmier traces and positive traces -- 7 Diagonal formulas for traces -- 8 Heat trace and ζ-function formulas -- 9 Criteria for measurability -- A Miscellaneous results -- Bibliography -- IndexThis book is the second edition of the first complete study and monograph dedicated to singular traces. The text offers, due to the contributions of Albrecht Pietsch and Nigel Kalton, a complete theory of traces and their spectral properties on ideals of compact operators on a separable Hilbert space. The second edition has been updated on the fundamental approach provided by Albrecht Pietsch. For mathematical physicists and other users of Connes’ noncommutative geometry the text offers a complete reference to traces on weak trace class operators, including Dixmier traces and associated formulas involving residues of spectral zeta functions and asymptotics of partition functions.De Gruyter Studies in Mathematics Operator spacesSymmetric functionsOperator spaces.Symmetric functions.515.732Lord Steven1219095Sukochev F. A.Zanin DmitriyMiAaPQMiAaPQMiAaPQBOOK9910554230903321Singular Traces2819052UNINA