01675nam--2200517---450 99000083412020331620180308150900.088-15-02084-50083412USA010083412(ALEPH)000083412USA01008341220020103d1989----km-y0itay0103----baitaIT||||||||001yy<<L'>> inferenza umanastrategie e lacune del giudizio socialeRichard Nisbett, Lee Ross[traduzione di Maria Teresa Fenoglio]BolognaIl Mulino1989474 p22 cmCollezione di testi e di studiPsicologiaHuman inference2001Collezione di testi e di studiPsicologia2001Human inference40120InferenzaAspetti psicologiciInferenzaAspetti sociali302.NISBETT,Richard223845ROSS,Lee403208ITsalbcISBD990000834120203316II.3. Coll.37/ 10(VI ps B COLL. 44/10)97266 LMVI ps B COLLII.3. Coll.37/ 10a(VI ps B COLL. 44/10 BIS)98468 LMVI ps B COLLCC 153.432 NIS1645 FILBKUMAFILPATTY9020020103USA01103120020403USA011729PATRY9020040406USA011657COPAT59020051028USA01152820121027USA01154520121027USA01160420121027USA011610Human inference40120UNISASA000244000903nam0-2200313 --450 991074018720332120230915084956.088-17-16590-5IT89-126020230915d1986----km y0itay50 baitaITy 001yyLetterePlatoneintroduzione di Dario Del Cornopremessa al testo, traduzione e note di Piero InnocentiMilanoBiblioteca universale Rizzoli1986291 p.18 cm<<I >>classici della BurL590FilosofiaStoria della filosofiaPlatone292329Innocenti,PieroDel Corno,DarioITUNINAREICATUNIMARCBK9910740187203321F.D.i2-643F.D.i2-643FI1FI1Epistolai51807UNINA10915nam 2200493 450 991083017250332120240110175338.01-119-79294-01-119-79293-2(MiAaPQ)EBC7205758(Au-PeEL)EBL7205758(CKB)26170457600041(EXLCZ)992617045760004120230520d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierRF Circuits for 5G Applications Designing with MmWave Circuitry /edited by Sangeeta Singh [and three others]Hoboken, NJ :John Wiley & Sons, Inc., and Scrivener Publishing LLC,[2023]©20231 online resource (340 pages)Print version: Singh, Sangeeta RF Circuits for 5G Applications Newark : John Wiley & Sons, Incorporated,c2023 9781119791928 Includes bibliographical references and index.Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: 5G Communication -- Chapter 1 Needs and Challenges of the 5th Generation Communication Network -- 1.1 Introduction -- 1.1.1 What is 5G and Do We Need 5G? -- 1.1.2 A Brief History of Gs -- 1.2 mmWave Spectrum, Challenges, and Opportunities -- 1.3 Framework Level Requirements for mmWave Wireless Links -- 1.4 Circuit Aspects -- 1.5 Outline of the Book -- Acknowledgement -- References -- Chapter 2 5G Circuits from Requirements to System Models and Analysis -- 2.1 RF Requirements Governed by 5G System Targets -- 2.2 Radio Spectrum and Standardization -- 2.3 System Scalability -- 2.4 Communication System Model for RF System Analysis -- 2.5 System-Level RF Performance Model -- 2.5.1 Transmitter, Receiver, Antenna Array and Transceiver Architectures for RF and Hybrid Beamforming -- 2.6 Radio Propagation and Link Budget -- 2.6.1 Radio Propagation Model -- 2.6.2 Link Budgeting -- 2.7 Multiuser Multibeam Analysis -- 2.8 Conclusion -- Acknowledgement -- References -- Chapter 3 Millimetre-Wave Beam-Space MIMO System for 5G Applications -- 3.1 Introduction -- 3.2 Beam-Space Massive MIMO System -- 3.2.1 System Model -- 3.2.2 Saleh-Valenzuela Channel Model -- 3.3 Array Response Vector -- 3.3.1 mmWave Beam-Space Massive (mWBSM)-MIMO System -- 3.4 Discrete Lens Antenna Array -- 3.5 Beam Selection Algorithm -- 3.6 Mean Sum Assignment-Based Beam User Association -- 3.6.1 Performance Evaluation -- 3.7 Conclusion -- References -- Part II: Oscillator &amp -- Amplifier -- Chapter 4 Gain-Bandwidth Enhancement Techniques for mmWave Fully-Integrated Amplifiers -- 4.1 RLC Tank -- 4.1.1 RC Low-Pass (LP) Filter -- 4.1.2 RLC Band-Pass (BP) Filter -- 4.2 Coupled Resonators -- 4.2.1 Bode-Fano (B-F) Limit -- 4.2.2 Capacitively Coupled Resonators -- 4.2.3 Inductively Coupled Resonators.4.2.4 Magnetically Coupled Resonators -- 4.2.5 Magnetically and Capacitive Coupled Resonator -- 4.2.6 Coupled Resonators Comparison -- 4.3 Resonators Based on the Transformers -- 4.3.1 On the Parasitic Interwinding Capacitance -- 4.3.2 Effect of Unbalanced Capacitive Terminations -- 4.3.3 Frequency Response Equalization -- 4.3.4 On the Parasitic Magnetic Coupling in Multistage Amplifiers -- 4.3.5 Extension to Impedance Transformation -- 4.3.6 On the kQ Product -- 4.3.7 Transformer-Based Power Dividers (PDs) -- 4.3.8 Transformer-Based Power Combiners (PCs) -- 4.4 Conclusion -- Acknowledgments -- References -- Chapter 5 Low-Noise Amplifiers -- 5.1 Introduction -- 5.2 Basics of RFIC -- 5.2.1 Voltage Gain in dB -- 5.2.2 Power Gain in dB -- 5.2.3 Issues in RF Design -- 5.3 Structure of MOSFET -- 5.4 Bandwidth Estimation Techniques -- 5.5 Noise -- 5.5.1 Noise in MOSFET -- 5.6 Different Topologies of LNA -- Conclusion -- Acknowledgement -- References -- Chapter 6 Mixer Design -- 6.1 Introduction -- 6.2 Properties -- 6.3 Diode Mixer -- 6.4 Transistor Mixer -- 6.5 Conclusion -- Acknowledgement -- References -- Chapter 7 RF LC VCOs Designing -- 7.1 Introduction -- 7.1.1 Basic VCO Models -- 7.1.2 Phase Noise -- 7.1.3 Flicker Noise -- 7.1.4 Distributed Oscillators -- 7.2 Tuning Extension Techniques -- 7.2.1 Varactor -- 7.2.2 Switched Capacitors -- 7.2.3 Switched Inductors -- 7.2.4 Switched TLs -- 7.2.5 4th Order Tanks and Other Techniques -- 7.3 Conclusion -- Acknowledgement -- References -- Chapter 8 RF Power Amplifiers -- 8.1 Specification -- 8.1.1 Efficiency -- 8.1.2 Generic Amplifier Classes -- 8.1.3 Heating -- 8.1.4 Linearity -- 8.1.5 Ruggedness -- 8.2 Bipolar PA Design -- 8.3 CMOS Power Amplifier Design -- 8.3.1 Performance Parameters -- 8.3.1.1 Linearity -- 8.3.1.2 Gain -- 8.3.1.3 Efficiency -- 8.3.1.4 Output Power -- 8.3.1.5 Power Consumption.8.3.2 Drawbacks of CMOS Power Amplifier -- 8.3.3 Design of CMOS Power Amplifier -- 8.3.3.1 Common Cascode PA Design -- 8.3.3.2 Self-Bias Cascode PA Design -- 8.3.3.3 Differential Cascode PA Design -- 8.3.3.4 Power Combining PA Design -- 8.4 Linearization Principles: Predistortion Technique, Phase-Correcting Feedback, Envelope Elimination and Restoration (EER), Cartesian Feedback -- 8.4.1 Predistortion Linearization Technique -- 8.4.2 Phase Correcting Feedback Technique -- 8.4.3 Cartesian Feedback Technique -- 8.4.4 Envelope Elimination and Restoration Technique -- Acknowledgement -- References -- Chapter 9 RF Oscillators -- 9.1 Introduction -- 9.2 Specifications -- 9.2.1 Frequency and Tuning -- 9.2.2 Tuning Constant and Linearity -- 9.2.3 Power Dissipation -- 9.2.4 Phase to Noise Ratio -- 9.2.5 Reciprocal Mixing -- 9.2.6 Signal to Noise Degradation of FM Signals Spurious Emission -- 9.2.7 Harmonics, I/Q Matching, Technology and Chip Area -- 9.3 LC Oscillators -- 9.3.1 Frequency, Tuning and Phase Noise Frequency Tuning Phase Noise to Carrier Ratio -- 9.3.2 Topologies -- 9.3.3 NMOS Only Cross-Coupled Structure -- 9.3.4 RC Oscillators -- 9.4 Design Examples -- 9.4.1 830 MHz Monolithic LC Oscillator Circuit Design Measurements -- 9.4.2 A 10 GHz I/Q RC Oscillator with Active Inductors -- 9.5 Conclusion -- Acknowledgement -- References -- Part III: RF Circuit Applications -- Chapter 10 mmWave Highly-Linear Broadband Power Amplifiers -- 10.1 Basics of PAs -- 10.1.1 Single Transistor Amplifier -- 10.1.2 Trade-Offs Among Power Amplifier Design Parameters (P0, PAE and Linearity) -- 10.1.3 Harmonic Terminations and Switching Amplifiers -- 10.1.4 Challenges at Millimeter-Wave -- 10.2 Millimeter Wave-Based AB Class PA -- 10.2.1 Efficiency at Power Back-Off -- 10.2.2 Sources of AM-PM Distortion -- 10.2.3 Distortion Cancellation Techniques.10.2.3.1 Input PMOS Varactors -- 10.2.3.2 Complementary N-PMOS Amplifier -- 10.2.3.3 Degeneration Inductance -- 10.2.3.4 Harmonic Traps -- 10.3 Design Example: A Highly Linear Wideband PA in 28 nm CMOS -- 10.3.1 Transformer-Based Output Combiner and Inter-Stage Power Divider -- 10.3.2 More on the kQ Product -- 10.4 Conclusion -- Acknowledgments -- References -- Chapter 11 FinFET Process Technology for RF and Millimeter Wave Applications -- 11.1 Evaluation of FinFET Technology -- 11.1.1 Steps of Fabrication and Process Flow of FinFET Technology -- 11.1.2 Digital Performance -- 11.1.3 Analog/RF Performance -- 11.2 Distinct Properties of FinFET -- 11.2.1 Performance with Transistor Scaling -- 11.2.2 Nonlinear Gate Resistance by Three Dimensional Structure -- 11.2.3 Self-Heating Effect in FinFETs -- 11.3 Assessment of FinFET Technology for RF/mmWave Applications -- 11.3.1 RF Performance -- 13.3.1.1 Parasitic Extraction -- 11.3.2 Noise Performance -- 11.3.3 Noise Matching with Gain at the mmWave Frequency -- 11.4 Design Process of FinFET for RF/mmWave Performance Optimization -- 11.4.1 Cascaded Chain Design Consideration for Wireless System -- 11.4.2 Optimization of Noise Figure with Gmax for LNA Within Self-Heat Limit -- 11.4.3 Gain Per Power Efficiency -- 11.4.4 Linearity for Gain and Power Efficiency -- 11.4.5 Neutralization for mmWave Applications -- References -- Chapter 12 Pre-Distortion: An Effective Solution for Power Amplifier Linearization -- 12.1 Introduction -- 12.2 Standard Measures of Nonlinearity of Power Amplifier -- 12.2.1 Gain Compression Point (1 dB) -- 12.2.2 Harmonic and Intermodulation Distortion (IMD) -- 12.2.3 Third-Order Intercept Point (TOI) -- 12.2.4 AM/AM and AM/PM Distortion -- 12.2.5 Adjacent Channel Power Ratio (ACPR) -- 12.2.6 Error Vector Magnitude (EVM) -- 12.3 What is Linearization? -- 12.3.1 Feed Forward Linearization.12.3.2 Feedback Linearization -- 12.3.3 Pre-Distortion Linearization -- 12.4 Example of Analog Pre-Distortion-Based Class EFJ Power Amplifier -- Conclusion and Future Scope -- References -- Chapter 13 Design of Control Circuit for Mitigation of Shadow Effect in Solar Photovoltaic System -- 13.1 Introduction -- 13.2 Proposed Methodology -- 13.3 Results and Discussion -- 13.4 Conclusion -- Acknowledgement -- References -- Part IV: RF Circuit Modeling -- Chapter 14 HBT High-Frequency Modeling and Integrated Parameter Extraction -- 14.1 HBT High-Frequency Modeling and Integrated Parameter Extraction -- 14.2 High-Frequency HBT Modeling -- 14.2.1 DC and Small Signal Models -- 14.2.2 Linearized T-Model -- 14.2.3 Linearized Hybrid ð model -- 14.3 Integrated Parameters Extraction -- 14.3.1 Formulation of Integrated Parameter Extraction -- 14.3.2 Optimization of Model -- 14.4 Noise Model Validation -- 14.5 Parameters Extraction of an HBT Model -- Acknowledgement -- References -- Chapter 15 Non-Linear Microwave Circuit Design Using Multi-Harmonic Load-Pull Simulation Technique -- 15.1 Introduction -- 15.2 Multi-Harmonic Load-Pull Simulation Using Harmonic Balance -- 15.2.1 Formulation of Multi-Harmonic Load-Pull Simulation -- 15.2.2 Systematic Design Procedure -- 15.3 Application of Multiharmonic Load-Pull Simulation -- 15.3.1 Narrowband Power Amplifier Design -- 15.3.2 Frequency Doubler Design -- References -- Chapter 16 Microwave RF Designing Concepts and Technology -- 16.1 Introduction -- 16.1.1 Gain -- 16.1.2 Noise -- 16.1.3 Non Linearity -- 16.1.4 Sensitivity -- 16.2 Microwave RF Device Technology and Characterization -- 16.2.1 Characterization and Modeling -- 16.2.2 Modeling -- 16.2.3 Cut-Off Frequency -- 16.2.4 Maximum Oscillation Frequency -- 16.2.5 Input Limited Frequency -- 16.2.6 Output Limited Frequency -- 16.2.7 Maximum Available Frequency.16.2.8 Technology Choices.Radio frequency integrated circuits5G mobile communication systemsRadio frequency integrated circuits.5G mobile communication systems.621.38412Singh SangeetaPhD,MiAaPQMiAaPQMiAaPQBOOK9910830172503321RF Circuits for 5G Applications4044429UNINA