00809nam0-22002891i-450-99000509524040332120110621124058.0000509524FED01000509524(Aleph)000509524FED0100050952419990604g19419999km-y0itay50------baitay-------001yyVent'anni fra due guerreLuigi SalvatorelliRomaEdizioni italiane1941XI, 553 p.23 cmEuropaStoria1918-1939940.51Salvatorelli,Luigi<1886-1974>7054ITUNINARICAUNIMARCBK990005095240403321940.51 SAL 1Bibl. 16919FLFBCFLFBCVent'anni fra due guerre492373UNINA01357nam2-2200385li-450 99000021682020331620180312154902.03-540-62645-X0021682USA010021682(ALEPH)000021682USA01002168220001109d1997----km-y0itay0103----baengGW<<The>> semi-simple zeta function of quaternionic Shimura varietesHarry ReimannBerlin [etc.]Springer-Verlagcopyr. 1997143 p.ill23 cmLecture notes in mathematics165700100212632001Lecture notes in mathematicsa collection of informal reports and seminarsedited by A. Dold, Heidelberg and B. Eckmann, Zürichfunzioni z51556Funzione zetaReimann,Harry61869Sistema bibliotecario di Ateneo dell' Università di SalernoRICA990000216820203316510 LNM (1657)002O356 CBS51000110585BKSCI1997112220001110USA011714ALANDI9020011204USA01152220020403USA011630PATRY9020040406USA011616Semi-simple zeta function of quaternionic Shimura varietes1502042UNISA03700nam 2200601 450 991048052310332120170816143306.01-4704-0373-0(CKB)3360000000464959(EBL)3114426(SSID)ssj0000889125(PQKBManifestationID)11523070(PQKBTitleCode)TC0000889125(PQKBWorkID)10875171(PQKB)10828108(MiAaPQ)EBC3114426(PPN)195416619(EXLCZ)99336000000046495920030108d2003 uy| 0engur|n|---|||||txtccrOn the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems /P. Lochak, J.-P. Marco, D. SauzinProvidence, Rhode Island :American Mathematical Society,2003.1 online resource (162 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 775"Volume 163, number 775 (second of 5 numbers)."0-8218-3268-9 Includes bibliographical references.""Contents""; ""Chapter 0. Introduction and Some Salient Features of the Model Hamiltonian""; ""Chapter 1. Symplectic Geometry and the Splitting of Invariant Manifolds""; "" 1.1. Symplectic geometry: a short reminder""; "" 1.2. Hyperbolic invariant manifolds""; "" 1.3. Angles of Lagrangian planes: the symplectic viewpoint""; "" 1.4. Angles of Lagrangian planes: the Euclidean viewpoint""; "" 1.5. Symplectic isomorphisms, angles and splitting forms""; "" 1.6. The splitting of Lagrangian submanifolds""; "" 1.7. Lagrangian submanifolds in a cotangent bundle"""" 1.8. Hyperbolic tori and normally hyperbolic invariant manifolds"""" 1.9. The perturbative setting""; "" 1.10. Lagrangian intersections and homoclinic trajectories""; "" 1.11. The splitting of the invariant manifolds of hyperbolic tori""; ""Chapter 2. Estimating the Splitting Matrix Using Normal Forms""; "" 2.1. Resonant normal forms""; "" 2.2. Computations in the vicinity of a resonant surface""; "" 2.3. Splitting in a perturbative setting, variance and stability""; "" 2.4. General exponential estimates for the splitting matrix"""" 2.5. Persistence of tori, invariant manifolds and homoclinic trajectories"""" 2.6. Splitting and stability""; ""Chapter 3. The Hamiltonâ€?Jacobi Method for a Simple Resonance""; "" 3.1. Notation and assumptions""; "" 3.2. Formal solutions and the Hamiltonâ€?Jacobi algorithm""; "" 3.3. Convergence and domains of analyticity""; "" 3.4. Exponential closeness of the invariant manifolds""; "" 3.5. Linear versus nonlinear splitting""; "" 3.6. Some variants and possible generalizations""; "" 3.7. A short historical tour and some concluding remarks""""Appendix. Invariant Tori With Vanishing or Zero Torsion""""Bibliography ""Memoirs of the American Mathematical Society ;no. 775.Hamiltonian systemsInvariant manifoldsElectronic books.Hamiltonian systems.Invariant manifolds.510 s514/.74Lochak P(Pierre),52270Marco J.-PSauzin D.1966-MiAaPQMiAaPQMiAaPQBOOK9910480523103321On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems2262665UNINA