05344nam 22007331 450 991013903000332120200520144314.01-118-61235-31-118-61232-91-118-61231-0(CKB)2550000001159888(EBL)1550546(SSID)ssj0001053089(PQKBManifestationID)11606606(PQKBTitleCode)TC0001053089(PQKBWorkID)11102996(PQKB)10841291(DLC) 2013019187(Au-PeEL)EBL1550546(CaPaEBR)ebr10799798(CaONFJC)MIL543093(CaSebORM)9781118612354(MiAaPQ)EBC1550546(OCoLC)843010592(PPN)191455679(EXLCZ)99255000000115988820130506h20142014 uy 0engur|n|---|||||txtccrFast sequential Monte Carlo methods for counting and optimization /Reuven Rubinstein, Ad Ridder, Radislav Vaisman1st editionHoboken, New Jersey :John Wiley & Sons, Inc.,[2014]©20141 online resource (208 p.)Wiley series in probability and statisticsDescription based upon print version of record.1-118-61226-4 1-306-11842-5 Includes bibliographical references and index.Cover; Title Page; Contents; Preface; Chapter 1 Introduction to Monte Carlo Methods; Chapter 2 Cross-Entropy Method; 2.1. Introduction; 2.2. Estimation of Rare-Event Probabilities; 2.3. Cross-Entrophy Method for Optimization; 2.3.1. The Multidimensional 0/1 Knapsack Problem; 2.3.2. Mastermind Game; 2.3.3. Markov Decision Process and Reinforcement Learning; 2.4. Continuous Optimization; 2.5. Noisy Optimization; 2.5.1. Stopping Criterion; Chapter 3 Minimum Cross-Entropy Method; 3.1. Introduction; 3.2. Classic MinxEnt Method; 3.3. Rare Events and MinxEnt; 3.4. Indicator MinxEnt Method3.4.1. Connection between CE and IME3.5. IME Method for Combinatorial Optimization; 3.5.1. Unconstrained Combinatorial Optimization; 3.5.2. Constrained Combinatorial Optimization: The Penalty Function Approach; Chapter 4 Splitting Method for Counting and Optimization; 4.1. Background; 4.2. Quick Glance at the Splitting Method; 4.3. Splitting Algorithm with Fixed Levels; 4.4. Adaptive Splitting Algorithm; 4.5. Sampling Uniformly on Discrete Regions; 4.6. Splitting Algorithm for Combinatorial Optimization; 4.7. Enhanced Splitting Method for Counting; 4.7.1. Counting with the Direct Estimator4.7.2. Counting with the Capture-Recapture Method4.8. Application of Splitting to Reliability Models; 4.8.1. Introduction; 4.8.2. Static Graph Reliability Problem; 4.8.3. BMC Algorithm for Computing S(Y); 4.8.4. Gibbs Sampler; 4.9. Numerical Results with the Splitting Algorithms; 4.9.1. Counting; 4.9.2. Combinatorial Optimization; 4.9.3. Reliability Models; 4.10. Appendix: Gibbs Sampler; Chapter 5 Stochastic Enumeration Method; 5.1. Introduction; 5.2. OSLA Method and Its Extensions; 5.2.1. Extension of OSLA: nSLA Method; 5.2.2. Extension of OSLA for SAW: Multiple Trajectories; 5.3. SE Method5.3.1. SE Algorithm5.4. Applications of SE; 5.4.1. Counting the Number of Trajectories in a Network; 5.4.2. SE for Probabilities Estimation; 5.4.3. Counting the Number of Perfect Matchings in a Graph; 5.4.4. Counting SAT; 5.5. Numerical Results; 5.5.1. Counting SAW; 5.5.2. Counting the Number of Trajectories in a Network; 5.5.3. Counting the Number of Perfect Matchings in a Graph; 5.5.4. Counting SAT; 5.5.5. Comparison of SE with Splitting and SampleSearch; Appendix A Additional Topics; A.1. Combinatorial Problems; A.1.1. Counting; A.1.2. Combinatorial Optimization; A.2. InformationA.2.1. Shannon EntropyA.2.2. Kullback-Leibler Cross-Entropy; A.3. Efficiency of Estimators; A.3.1. Complexity; A.3.2. Complexity of Randomized Algorithms; Bibliography; Abbreviations and Acronyms; List of Symbols; Index; Series Page A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Wiley Series in Probability and StatisticsMathematical optimizationMonte Carlo methodMathematical optimization.Monte Carlo method.518/.282Rubinstein Reuven Y43545Ridder Ad1955-883264Vaisman Radislav883265MiAaPQMiAaPQMiAaPQBOOK9910139030003321Fast sequential Monte Carlo methods for counting and optimization1972949UNINA01595nlm0 22003611i 450 UON0050418220250630014511.724978-13-15-26501-820201229d2018 |0itac50 baengUS|||| |||||f e bStorytelling and ethicsliterature, visual arts and the power of narrativeedited by Hanna Meretoja and Colin Davis New YorkLondonRoutledge 20181 risorsa online (x, 314 p.24 cm.)001UON005042292001 Routledge interdisciplinary perspectives on literature80Letteratura narrativaRetoricaUONC061962FILetteratura narrativa StudiUONC062596FIUSNew YorkUONL000050GBLondonUONL003044808.3014Retorica della narrativa. Filosofia e teoria. Linguaggio e comunicazione.21DavisColinUONV284432MeretojaHannaUONV284430RoutledgeUONV248939650ITSOL20250704RICAhttps://www.taylorfrancis.com/books/9781315265018Accesso per utenti con proxy server attivohttps://www.taylorfrancis.com/books/9781315265018Accesso per utenti con proxy server attivoUON00504182SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI2021100 1J 20210107 Storytelling and ethics1763154UNIOR