01106nam0 22002891i 450 UON0039331820231205104622.73220110601d1977 |0itac50 barumRO|||| 1||||Acasa la EnescuTeodor BalanBucurestiEditura Sport-Turism1977163 p.19 cm.ex-inventario : DLLOMM 7038IT-UONSI FONDOONCIULESCUB/0281ENESCU GEORGEUONC074705FIMUSICA ROMENAUONC079032FIROBucureştiUONL000071859Letteratura romena e letterature ladine21BALANTEODORUONV202313705604Editura Sport-TurismUONV275889650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00393318SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI FONDO ONCIULESCU B 0281 SI EO 46530 5 0281 ex-inventario : DLLOMM 7038Acasa la Enescu1350705UNIOR02827nam 22006015 450 991014460010332120250729101854.03-540-40015-X10.1007/b75857(CKB)1000000000233175(SSID)ssj0000323645(PQKBManifestationID)12064872(PQKBTitleCode)TC0000323645(PQKBWorkID)10300706(PQKB)11472141(DE-He213)978-3-540-40015-8(MiAaPQ)EBC3073230(PPN)155189670(EXLCZ)99100000000023317520121227d2000 u| 0engurnn|008mamaatxtccrGrothendieck Duality and Base Change /by Brian Conrad1st ed. 2000.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,2000.1 online resource (XII, 300 p.) Lecture Notes in Mathematics,1617-9692 ;1750Bibliographic Level Mode of Issuance: Monograph3-540-41134-8 Includes bibliographical references and index.Introduction -- Basic compatibilities -- Duality foundations -- Proof of main theorom -- Examples: Higher direct images. Curves -- Residues and cohomology with supports -- Trace map on smooth curves.Grothendieck's duality theory for coherent cohomology is a fundamental tool in algebraic geometry and number theory, in areas ranging from the moduli of curves to the arithmetic theory of modular forms. Presented is a systematic overview of the entire theory, including many basic definitions and a detailed study of duality on curves, dualizing sheaves, and Grothendieck's residue symbol. Along the way proofs are given of some widely used foundational results which are not proven in existing treatments of the subject, such as the general base change compatibility of the trace map for proper Cohen-Macaulay morphisms (e.g., semistable curves). This should be of interest to mathematicians who have some familiarity with Grothendieck's work and wish to understand the details of this theory.Lecture Notes in Mathematics,1617-9692 ;1750Geometry, AlgebraicNumber theoryAlgebraic GeometryNumber TheoryGeometry, Algebraic.Number theory.Algebraic Geometry.Number Theory.515/.782Conrad Brianauthttp://id.loc.gov/vocabulary/relators/aut65658MiAaPQMiAaPQMiAaPQBOOK9910144600103321Grothendieck duality and base change378457UNINA