00943nam0 22002531i 450 UON0038338120231205104538.44120100720d1999 |0itac50 baindID|||| |||||Jatuhnya Soehartoed. Geoff Forrester, R.J. MayJakartaAliansi Jurnalis IndependenAJI1999XXXV, 220 p.21 cm.INDONESIAPolitica e governo1966-1998UONC025515FIINDS VINDONESIA - POLITOLOGIAAFORRESTERGeoffUONV197732MAYR.J.UONV197734ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00383381SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI INDS V 047 N SI SA 127493 5 047 N Jatuhnya Soeharto1352962UNIOR11589nam 22006013 450 991100704180332120240410033715.097801280373550128037350(CKB)4930000000030351(PPN)198685009(FR-PaCSA)88829586(MiAaPQ)EBC2076954(FRCYB88829586)88829586(EXLCZ)99493000000003035120210428d2015 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierPetroleum Engineer's Guide to Oil Field Chemicals and Fluids2nd ed. :Elsevier Science & Technology,2015.©2015.1 online resource (854 pages)9780128037348 0128037342 Front Cover -- Petroleum Engineer's Guide to Oil Field Chemicals and Fluids -- Copyright -- Preface to Second Edition -- Preface -- How to Use This Book -- Index -- Bibliography -- Acknowledgments -- Contents -- Chapter 1: Drilling muds -- 1.1 Classification of muds -- 1.1.1 Dispersed noninhibited systems -- 1.1.2 Phosphate-treated muds -- 1.1.3 Lignite muds -- 1.1.4 Quebracho muds -- 1.1.5 Lignosulfonate muds -- 1.1.6 Lime muds -- 1.1.7 Sea water muds -- 1.1.8 Nondispersed noninhibited systems -- 1.1.9 Low-solids fresh water muds -- 1.1.10 Variable density fluids -- 1.1.11 Gas-based muds -- 1.1.12 Drill-in fluids -- Heavy brine completion fluids -- 1.2 Mud compositions -- 1.2.1 Inhibitive water-based muds -- 1.2.2 Water-based muds -- Compositions with improved thermal stability -- Shale encapsulator -- Membrane formation -- 1.2.3 Oil-based drilling muds -- Poly(ether)cyclicpolyols -- Emulsifier for deep drilling -- Biodegradable composition -- Electric conductive nonaqueous mud -- Water removal -- 1.2.4 Synthetic muds -- 1.2.5 Inverted emulsion drilling muds -- Esters -- Acetals -- Anti-settling properties -- Glycosides -- Miscellaneous -- Reversible phase inversion -- 1.2.6 Foam drilling -- 1.2.7 Chemically enhanced drilling -- Temperature and salinity effects -- 1.2.8 Supercritical carbon dioxide drilling -- 1.3 Additives -- 1.3.1 Thickeners -- Polymers -- pH responsive thickeners -- Mixed metal hydroxides -- 1.3.2 Lubricants -- Hagfish slime -- 1.3.3 Bacteria -- 1.3.4 Corrosion inhibitors -- 1.3.5 Viscosity control -- 1.3.6 Clay stabilization -- 1.3.7 Formation damage -- 1.3.8 Shale stabilizer -- 1.3.9 Fluid loss additives -- Water swellable polymers -- Shear degradation of lost circulation materials -- Anionic association polymer -- Fragile gels -- Aphrons -- Permanent grouting -- 1.3.10 Scavengers -- Oxygen scavenger.Hydrogen sulfide removal -- 1.3.11 Surfactants -- Surfactant in hydrocarbon solvent -- Biodegradable surfactants -- Deflocculants and dispersants -- Shale stabilizing surfactants -- Toxicity -- Defoamers -- 1.3.12 Hydrate inhibitors -- 1.3.13 Weighting materials -- Barite -- Ilmenite -- Carbonate -- Zinc oxide, zirconium oxide, and manganese tetroxide -- Hollow glass microspheres -- 1.3.14 Organoclay compositions -- Biodegradable organophilic clay -- Poly(vinyl neodecanoate) -- 1.3.15 Miscellaneous -- Reticulated bacterial cellulose -- Scleroglucan -- Uintaite -- Sodium asphalt sulfonate -- Formation damage by gilsonite and sulfonated asphalt -- Illitic sandstone outcrop cores -- 1.3.16 Multicomponent additives -- 1.4 Cleaning operations -- 1.4.1 Cuttings removal -- 1.4.2 Junk removal -- 1.4.3 Filter cake removal -- 1.5 Drilling fluid disposal -- 1.5.1 Toxicity -- 1.5.2 Conversion into cements -- 1.5.3 Environmental regulations -- 1.6 Characterization of drilling muds -- 1.6.1 Viscosity -- 1.6.2 API Filtration -- 1.6.3 Alkalinity and pH -- 1.6.4 Total hardness -- 1.6.5 Roller oven -- 1.6.6 Effects on log data -- References -- Chapter 2: Fluid loss additives -- 2.1 Mechanism of action of fluid loss agents -- 2.1.1 Pore size measurement by nanoparticles -- 2.1.2 Action of macroscopic particles -- 2.1.3 Action of cement fluid loss additives -- 2.1.4 Testing of fluid loss additives -- 2.1.5 Formation damage -- 2.1.6 Reversible gels -- 2.1.7 Bacteria -- 2.2 Inorganic additives -- 2.2.1 Bentonite -- 2.2.2 Sodium metasilicate -- 2.2.3 Ultra-fine filtrate-reducing agents -- 2.2.4 Bridging agents for fluid loss control -- 2.3 Organic additives -- 2.3.1 Tall oil pitch -- 2.3.2 Mercaptans for iron control -- 2.4 Poly(saccharide)s -- 2.4.1 Cellulose-based fluid loss additives -- Polyanionic cellulose -- Sulfonate -- Carboxymethyl cellulose.Hydroxyethyl cellulose -- 2.4.2 Starch -- Crosslinked starch -- Pregelatinized starch -- Granular starch and mica -- Depolymerized starch -- Controlled degradable fluid loss additives -- Multimodal distributed polymers -- 2.4.3 Borate crosslinkers -- 2.4.4 Guar -- Hydroxypropyl guar gum -- 2.4.5 Succinoglycan -- 2.4.6 Poly(ether)-modified poly(saccharide)s -- 2.4.7 Scleroglucan -- 2.4.8 Gellan -- 2.5 Humic acid derivates -- Oil-based well working fluids -- 2.5.1 Lignosulfonates -- Grafted lignin or lignite -- Greek lignites -- 2.6 Synthetic polymers -- 2.6.1 Poly(orthoester)s -- 2.6.2 Poly(hydroxyacetic acid) -- 2.6.3 Polydrill -- Polymer of monoallylamine -- Polyphenolics -- 2.6.4 Latex -- Colloidally stabilized latex -- 2.6.5 Poly(vinyl alcohol) -- 2.6.6 Poly(ethyleneimine) -- 2.6.7 Acrylics -- Permeability control -- Copolymers -- Oil soluble styrene acrylate copolymers -- AMPS terpolymer -- 2.6.8 Silicones -- 2.6.9 Phthalimide as a diverting material -- 2.6.10 Control of degradation rates for polymericdiverting agents -- 2.6.11 Special applications -- Coal-bed methane drilling -- Sand control -- Reduction of fines migration -- Fracturing -- Biomimetic adhesive compositions -- Cement compositions -- Viscoelasticity -- Viscoelastic surfactants -- Enhanced shear recovery agents -- Enzyme-based gel breaking -- Breaker enhancers for VES -- Surfactant polymer compositions -- Additives to reduce fluid loss -- References -- Chapter 3: Clay stabilization -- 3.1 Properties of clays -- 3.1.1 Swelling of clays -- 3.1.2 Montmorillonite -- 3.1.3 Guidelines -- 3.2 Mechanisms causing instability -- 3.2.1 Kinetics of swelling of clays -- 3.2.2 Hydrational stress -- 3.2.3 Borehole stability model -- 3.2.4 Shale inhibition with water-based muds -- 3.2.5 Inhibiting reactive argillaceous formations -- 3.2.6 Thermal treatment to increase the permeability.3.2.7 Formation damage by fluids -- 3.2.8 Formation damage in gas productionshut-in -- 3.3 Inhibitors of swelling -- 3.4 Inhibitors in detail -- 3.4.1 Salts -- 3.4.2 Quaternary ammonium salts -- 3.4.3 Potassium formate -- 3.4.4 Saccharide derivatives -- 3.4.5 Sulfonated asphalt -- 3.4.6 Grafted copolymers -- 3.4.7 Poly(oxyalkylene amine)s -- 3.4.8 Anionic polymers -- 3.4.9 Amine salts of maleic imide -- Environmentally friendly clay stabilizer -- 3.4.10 Comparative study -- 3.5 Test methods -- 3.5.1 Shale erosion test -- Disintegration of particles -- Change of mesh size -- 3.5.2 Hassler cell -- References -- Chapter 4: Lubricants -- 4.1 Synthetic greases -- 4.1.1 Base fluids -- 4.1.2 Extreme pressure agents -- 4.1.3 Anti-seize agents -- 4.1.4 Anti-wear additives -- 4.1.5 Metal deactivators -- 4.1.6 Solubility aids -- 4.1.7 Antioxidants -- 4.1.8 Base stocks -- 4.2 Lubricant compositions -- 4.2.1 Molybdenum disulfide -- 4.2.2 Polarized graphite -- 4.2.3 Ellipsoidal glass granules -- 4.2.4 Calcium sulfonate based greases -- 4.2.5 Paraffins -- 4.2.6 Olefins -- 4.2.7 Phospholipids -- 4.2.8 Alcohols -- Alcohol glucoside mixture -- Partial glycerides -- Aminoethanols -- Polymeric alcohols -- 4.2.9 Ethers -- 4.2.10 Esters -- Ester-based oils -- Ester alcohol mixtures -- Phosphate esters -- Biodegradable compositions -- 4.2.11 Polymers -- 4.2.12 Starch -- 4.2.13 Amides -- 4.3 Special issues -- 4.3.1 Side reactions -- 4.3.2 Silicate-based muds -- 4.3.3 Studies on pipe sticking -- 4.3.4 Differential sticking reducer -- References -- Chapter 5: Bacteria control -- 5.1 Mechanisms of growth -- 5.1.1 Growth of bacteria supported by oilfield chemicals -- 5.1.2 Mathematical models -- Model of colony growth -- 5.1.3 Modeling of nitrate injection -- 5.1.4 Detection of bacteria -- API serial dilution method -- Enzymatic assay -- Electrochemical determination.Colorimetry -- Most probable number technique -- DNA sequencing -- 5.1.5 Sulfate-reducing bacteria -- Issues in the oilfield -- 5.1.6 Bacterial corrosion -- 5.1.7 Mechanisms of microbial corrosion -- Simultaneous mechanisms of corrosion -- pH regulation -- Biocide enhancers -- 5.1.8 Corrosion monitoring -- Bacterial hydrogenase -- Lipid biomarkers -- Electron microscopy -- Electrochemical impedance spectroscopy -- 5.1.9 Assessment of activity of biocides -- 5.1.10 Synergistic action of biocides -- 5.2 Treatments with biocides -- 5.2.1 Previously fractured formations -- 5.2.2 Intermittent addition of biocide -- 5.2.3 Nonbiocidal control -- Biocompetitive exclusion technology -- Inhibitors for bacterial films -- Periodic change in ionic strengths -- 5.3 Biocides -- 5.3.1 Various biocides -- Formaldehyde -- Glutaraldehyde -- Bisulfite adduct -- Combined chlorine-aldehyde treatment -- Green biocide enhancer -- Quaternary ammonium based biocides -- Bis[tetrakis(hydroxymethyl)phosphonium] sulfate -- Thiones for treatment fluids -- Halogen compounds -- Bromine chloride -- Chlorine dioxide -- Nitrogen containing compounds -- Effervescent biocide compositions -- References -- Chapter 6: Corrosion inhibitors -- 6.1 Specific issues -- 6.1.1 Sweet corrosion -- 6.1.2 Absorption of hydrogen sulfide -- 6.1.3 Predicting inhibited erosion corrosion -- 6.2 Corrosion: application of chicory as corrosion inhibitor for acidic environments -- 6.3 Classification of corrosion inhibitors -- 6.4 Fields of application -- 6.4.1 Acidization -- 6.4.2 Oil storage tanks -- 6.4.3 Pipelines -- 6.4.4 Production wells -- 6.4.5 Scale removal treatments using acids -- 6.5 Application techniques -- 6.5.1 Batch application versus continuous application -- 6.5.2 Emulsions -- 6.5.3 Application in solid form -- 6.6 Characterization -- 6.6.1 Dye transfer method -- 6.6.2 Liquid chromatography.6.6.3 Thin layer chromatography.The oil and gas engineer on the job requires knowing all the available oil field chemicals and fluid applications that are applicable to the operation. Updated with the newest technology and available products, Petroleum Engineer's Guide to Oil Field Chemicals and Fluids, Second Edition, delivers all the necessary lists of chemicals by use, their basic components, benefits, and environmental implications. In order to maintain reservoir protection and peak well production performance, operators demand to know all the options that are available. Instead of searching through various sources, Pet.Oil field chemicalsOil field brinesOil field brinesfast(OCoLC)fst01044556Oil field chemicalsfast(OCoLC)fst01044563Oil field chemicals.Oil field brines.Oil field brines.Oil field chemicals.622.3382/028622.33820284Fink Johannes1711526MiAaPQMiAaPQMiAaPQBOOK9911007041803321Petroleum Engineer's Guide to Oil Field Chemicals and Fluids4387918UNINA03287nam 2200373z- 450 991049373440332120240709171244.0(CKB)5590000000537478(oapen)https://directory.doabooks.org/handle/20.500.12854/71510(EXLCZ)99559000000053747820202102d2021 |y 0gerurmn|---annantxtrdacontentcrdamediacrrdacarrierUniversalistisches Ideal und koloniale KontinuitätenDie »harkis« in der Fünften Französischen RepublikAnna LaißHeidelbergHeidelberg University Publishing (heiUP)20211 electronic resource (528 p.)Pariser Historische StudienBand 1203-96822-062-5 3-96822-063-3 When Algeria gained independence in 1962, an estimated 1 million European settlers and roughly 85 000 so called »Harkis«, muslim Algerians that served as auxiliaries in the French Army, left Algeria en route to France. Were the »Harkis« received as »traitors of the Algerian nation«, as »French citizens with rights to repatriation« or were they seen simply as »refugees«? Anna Laiß provides insightful analysis into the controversial perceptions and portrayals that dominated the “Harkis« existence, and that of their descendents, in their search for a place in the French Republic. She reveals the areas of conflict and discord between the French ideals of republican universalism and the colonial mindset and behaviour, which are to be found in debates about integration and colonial memory, and which extend well beyond the period of decolonisation.Mit der Unabhängigkeit Algeriens im Jahr 1962 verließen nicht nur eine Million europäische Siedler das Land in Richtung Frankreich, sondern auch etwa 85 000 »harkis«: Muslime, die während des Krieges insbesondere als Hilfssoldaten die französische Armee unterstützt hatten. Kamen die »harkis« als »Verräter an der algerischen Nation«, als »gleichberechtigte französische Staatsbürger« und somit als Repatriierte, oder waren sie als Flüchtlinge anzusehen? Anna Laiß analysiert die von unterschiedlichen Fremdbildern geprägten Kontroversen sowie die damit verbundene schwierige Suche der »harkis« und deren Nachkommen nach ihrem Platz in der Französischen Republik. Sie zeigt das Spannungsfeld zwischen universalistischem Ideal und kolonialen Handlungs- und Denkweisen auf, die sich in dem weit über die Dekolonisation hinausreichenden Untersuchungszeitraum in den Debatten um Integration und koloniale Erinnerungen wiederfinden.Universalistisches Ideal und koloniale KontinuitätenUniversalistisches Ideal und koloniale KontinuitätenNational liberation & independence, post-colonialismbicsscMigration; Colonialism; Algerian War; Harki; Collective Memory; Kolonialismus; Algerienkrieg; Harki; Kollektive ErinnerungNational liberation & independence, post-colonialismLaiß Annaauth1300358BOOK9910493734403321Universalistisches Ideal und koloniale Kontinuitäten3025520UNINA