01158nam0 22002651i 450 UON0018707620231205103158.1438-522-4182-20030730d1992 |0itac50 bagerAT|||| |||||Entwiecklung und institutionalisierung von Women's Studies im europaischen vergleichAnnette BaldaufAndrea GriesebnerWien, s.e.1992. 299 p. ; 24 cm.001UON001723662001 Materialen zur forderung von frauen in der wissenschaft210 Wien1FEMMINISMOStudiUONC036231FIATWienUONL003140BALDAUFAnnetteUONV108854676455GRIESEBNERAndreaUONV108855676456ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00187076SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI III STORIAEUR D A 1736 SI SC 27288 5 1736 Entwiecklung und institutionalisierung von Women's Studies im europaischen vergleich1286920UNIOR05958nam 22007335 450 991096286230332120250818102313.03-642-86105-910.1007/978-3-642-86105-5(CKB)3400000000109602(SSID)ssj0001241890(PQKBManifestationID)11801621(PQKBTitleCode)TC0001241890(PQKBWorkID)11253406(PQKB)10132187(DE-He213)978-3-642-86105-5(MiAaPQ)EBC3098234(PPN)237910268(EXLCZ)99340000000010960220121227d1990 u| 0engurnn#|||mamaatxtccrDensity Functional Theory An Approach to the Quantum Many-Body Problem /by Reiner M. Dreizler, Eberhard K.U. Gross1st ed. 1990.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1990.1 online resource (XI, 304 p.)Bibliographic Level Mode of Issuance: Monograph3-540-51993-9 3-642-86107-5 Includes bibliographical references and index.1. Introduction -- 2. Basic Formalism for Stationary Non-Relativistic Systems -- 2.1 The Hohenberg-Kohn Theorem -- 2.2 Degenerate Groundstates -- 2.3 v-Representability and Related Questions -- 2.4 Fractional Particle Number, Chemical Potential, and Derivative Discontinuities -- 3. Extensions -- 3.1 Spin-Polarised Systems -- 3.2 Finite Temperature Ensembles -- 3.3 Multicomponent Systems -- 3.4 Hartree-Fock Limit -- 3.5 Excited States -- 3.6 Density Matrix Functionals -- 3.7 Momentum Space -- 3.8 Bose Systems -- 3.9 Superconducting Systems -- 4. The Kohn-Sham Scheme -- 4.1 The Basic Kohn-Sham Equations -- 4.2 Degenerate Kohn-Sham Groundstates and the Question of v-Representability -- 4.3 Spin-Polarised Systems -- 4.4 Fractional Occupation, Janak’s Theorem, and the Slater Transition State -- 4.5 Excited States: The Kohn-Sham Scheme for Ensembles -- 4.6 Schrödinger Equation for the Square Root of the Groundstate Density -- 4.7 Hellmann-Feynman, Virial, and Scaling Properties of Density Functionals -- 4.8 Single-Particle Equations for Superconductors: A Generalized Bogoliubov-deGennes Scheme -- 5. Explicit Functionals I: Kinetic and Exchange Energy Functionals Derived from the One-Particle Density Matrix -- 5.1 Density-Gradient Expansions from Semiclassical Expansions: A Survey -- 5.2 The Kirzhnits Method -- 5.3 The Wigner-Kirkwood Approach and Partial Resummation of the Gradient Expansion -- 5.4 Empirical Convergence Studies of the Gradient Expansion -- 5.5 Original von Weizsäcker Functional Versus Gradient Expansion -- 5.6 Padé Approximants and Other Parametrisations -- 5.7 Phase-Space Approach Based on Local Thermodynamics -- 5.8 The Classical Density Functional Models of Thomas, Fermi, Dirac, and von Weizsäcker -- 6. Many-Body Perturbation Theory -- 6.1 Diagrammatic Approach to the InhomogeneousElectron Gas -- 6.2 The Exchange-Correlation Functional Expressed in Terms of the Irreducible Self-Energy -- 6.3 The Band Gap in Insulators and Semiconductors -- 6.4 The Fermi Surface in Metals -- 6.5 The Homogeneous Electron Gas -- 7. Explicit Functionals II: The Local Density Approximation and Beyond -- 7.1 The Local Density Approximation -- 7.2 Discussion of the Local Density Approximation -- 7.3 Nonlocal Density Schemes -- 7.4 Self-Interaction Corrections -- 7.5 Wave Vector Analysis -- 7.6 Gradient Corrections -- 7.7 Kohn-Sham Results for Atoms and Molecules -- 8. Density Functional Theory of Relativistic Systems -- 8.1 Introduction -- 8.2 Existence Theorems -- 8.3 Explicit Functionals I: The Relativistic Kirzhnits Expansion -- 8.4 The Homogeneous Relativistic Electron Gas -- 8.5 Explicit Functionals II: The Local Density Approximation -- 8.6 Remarks and Applications -- A. Definition of Density Matrices, Green’s Functions, and Correlation Functions -- B. Compilation of Literature on Atomic and Molecular Kohn-Sham Results -- References.Density Functional Theory is a rapidly developing branch of many-particle physics that has found applications in atomic, molecular, solid-state and nuclear physics. This book describes the conceptual framework of density functional theory and discusses in detail the derivation of explicit functionals from first principles as well as their application to Coulomb systems. Both non-relativistic and relativistic systems are treated. The connection of density functional theory with other many-body methods is highlighted. The presentation is self-contained; the book is, thus, well suited for a graduate course on density functional theory.Mathematical physicsChemistry, Physical and theoreticalCondensed matterAtomsMoleculesQuantum theoryTheoretical, Mathematical and Computational PhysicsTheoretical ChemistryCondensed Matter PhysicsAtomic, Molecular and Chemical PhysicsQuantum PhysicsMathematical physics.Chemistry, Physical and theoretical.Condensed matter.Atoms.Molecules.Quantum theory.Theoretical, Mathematical and Computational Physics.Theoretical Chemistry.Condensed Matter Physics.Atomic, Molecular and Chemical Physics.Quantum Physics.530.1Dreizler Reiner Mauthttp://id.loc.gov/vocabulary/relators/aut23014Gross Eberhard K.Uauthttp://id.loc.gov/vocabulary/relators/autBOOK9910962862303321Density Functional Theory328393UNINA