00909nam0 22002651i 450 UON0010474420231205102609.65320020107d1957 |0itac50 bachiCN|||| 1||||Er shi renYu DafuIV ed[s.l.]Qiming shju19571 v.23 cmLETTERATURA CINESENARRATIVASEC. XIX-XXUONC010552FIT.C.CTesti cinesi - LetteraturaAYU DafuUONV034136649195Qiming ShujuUONV249050650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00104744SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI T.C. C 175 SI SIN1345 5 175 Er shi ren1312105UNIOR03596nam 22007335 450 991090379020332120250808090419.03-031-57104-510.1007/978-3-031-57104-6(CKB)36443041300041(MiAaPQ)EBC31747165(Au-PeEL)EBL31747165(DE-He213)978-3-031-57104-6(EXLCZ)993644304130004120241031d2024 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierTwo-dimensional Product-Cubic Systems, Vol. IV Crossing-quadratic Vector Fields /by Albert C. J. Luo1st ed. 2024.Cham :Springer Nature Switzerland :Imprint: Springer,2024.1 online resource (262 pages)3-031-57103-7 Preface -- Crossing-quadratic and product-cubic systems -- Double-inflection-saddles and bifurcation dynamics -- Parabola-saddles and bifurcation.This book, the eighth of 15 related monographs, discusses a product-cubic dynamical system possessing a product-cubic vector field and a crossing-univariate quadratic vector field. It presents equilibrium singularity and bifurcation dynamics, and . the saddle-source (sink) examined is the appearing bifurcations for saddle and source (sink). The double-inflection saddle equilibriums are the appearing bifurcations of the saddle and center, and also the appearing bifurcations of the network of saddles and centers. The infinite-equilibriums for the switching bifurcations featured in this volume include: Parabola-source (sink) infinite-equilibriums, Inflection-source (sink) infinite-equilibriums, Hyperbolic (circular) sink-to source infinite-equilibriums, Hyperbolic (circular) lower-to-upper saddle infinite-equilibriums. Develops a theory of cubic dynamical systems having a product-cubic vector field and a crossing-quadratic vector field; Shows equilibriums and paralleled hyperbolic and hyperbolic-secant flows with switching though infinite-equilibriums; Presents CCW and CW centers separated by a paralleled hyperbolic flow and positive and negative saddles. .DynamicsNonlinear theoriesDynamicsMultibody systemsVibrationMechanics, AppliedEngineering mathematicsEngineeringData processingAlgebra, UniversalApplied Dynamical SystemsDynamical SystemsMultibody Systems and Mechanical VibrationsMathematical and Computational Engineering ApplicationsGeneral Algebraic SystemsDynamics.Nonlinear theories.Dynamics.Multibody systems.Vibration.Mechanics, Applied.Engineering mathematics.EngineeringData processing.Algebra, Universal.Applied Dynamical Systems.Dynamical Systems.Multibody Systems and Mechanical Vibrations.Mathematical and Computational Engineering Applications.General Algebraic Systems.515.39Luo Albert C. J720985MiAaPQMiAaPQMiAaPQBOOK9910903790203321Two-dimensional Product-Cubic Systems, Vol. IV4273152UNINA