01083nam0 22002771i 450 UON0010461620231205102609.10520020107d1986 |0itac50 bachiCN||||p |||||Tao Yuan Ming nianpuWang ZhidengBeijingZhonghua Shuju1986382 p.22 cmLETTERATURA CINESEPOESIASEC. IVUONC006535FICNShanghaiUONL000143CIN VI ACINA - LETTERATURA CLASSICA (FINO AL 1911)AWANG ZhidengUONV066961665092Zhonghua ShujuUONV246029650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00104616SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI CIN VI A 330 N SI SA 96523 7 330 N LETTERATURA PUNJABI - POESIA E TEATROLETTERATURA CINESE - POESIA - SEC. IVUONC006913Tao Yuan Ming nianpu1312250UNIOR01102cam0 2200265 450 E60020003069420240923094825.020071022d1968 |||||ita|0103 baitaITRaccolta delle circolari ed istruzioni ministeriali relative all'imposta di R.M. e complementare progressiva sul redditocomprende le circolari dal 1902 al 1. semestre 1967Benedetto Cocivera2 ed.MilanoGiuffrè19682296 p.19 cmSul front.: comprende le circolari dal 1962 al 1. settembre 1967Cocivera, BenedettoA600200042223070112930ITUNISOB20240923RICAUNISOBUNISOB340122841E600200030694M 102 Monografia moderna SBNM340006063Si122841donopomicinoUNISOBUNISOB20071022092000.020240923094825.0rovitoRaccolta delle circolari ed istruzioni ministeriali relative all'imposta di R.M. e complementare progressiva sul reddito1599053UNISOB04066nam 22005895 450 991101568440332120250712073512.0981-9650-20-810.1007/978-981-96-5020-0(MiAaPQ)EBC32201105(Au-PeEL)EBL32201105(CKB)39615172100041(OCoLC)1527722659(DE-He213)978-981-96-5020-0(EXLCZ)993961517210004120250707d2025 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierDifferential Geometry Foundations of Cauchy-Riemann and Pseudohermitian Geometry (Book I-C) /by Elisabetta Barletta, Sorin Dragomir, Mohammad Hasan Shahid, Falleh R. Al-Solamy1st ed. 2025.Singapore :Springer Nature Singapore :Imprint: Springer,2025.1 online resource (678 pages)Infosys Science Foundation Series in Mathematical Sciences,2364-4044981-9650-19-4 Cauchy–Riemann manifolds -- Pseudohermitian geometry -- Tangential Cauchy–Riemann complex -- Submanifolds of Hermitian and Sasakian manifolds.This book, Differential Geometry: Foundations of Cauchy–Riemann and Pseudohermitian Geometry (Book I-C), is the third in a series of four books presenting a choice of topics, among fundamental and more advanced, in Cauchy–Riemann (CR) and pseudohermitian geometry, such as Lewy operators, CR structures and the tangential CR equations, the Levi form, Tanaka–Webster connections, sub-Laplacians, pseudohermitian sectional curvature, and Kohn–Rossi cohomology of the tangential CR complex. Recent results on submanifolds of Hermitian and Sasakian manifolds are presented, from the viewpoint of the geometry of the second fundamental form of an isometric immersion. The book has two souls, those of Complex Analysis versus Riemannian geometry, and attempts to fill in the gap among the two. The other three books of the series are: Differential Geometry: Manifolds, Bundles, Characteristic Classes (Book I-A) Differential Geometry: Riemannian Geometry and Isometric Immersions (Book I-B) Differential Geometry: Advanced Topics in Cauchy–Riemann and Pseudohermitian Geometry (Book I-D) The four books belong to an ampler book project “Differential Geometry, Partial Differential Equations, and Mathematical Physics”, by the same authors, and aim to demonstrate how certain portions of differential geometry (DG) and the theory of partial differential equations (PDEs) apply to general relativity and (quantum) gravity theory. These books supply some of the ad hoc DG and PDEs machinery yet do not constitute a comprehensive treatise on DG or PDEs, but rather authors’ choice based on their scientific (mathematical and physical) interests. These are centered around the theory of immersions—isometric, holomorphic, and CR—and pseudohermitian geometry, as devised by Sidney Martin Webster for the study of nondegenerate CR structures, themselves a DG manifestation of the tangential CR equations.Infosys Science Foundation Series in Mathematical Sciences,2364-4044Geometry, DifferentialGlobal analysis (Mathematics)Manifolds (Mathematics)Differential GeometryGlobal Analysis and Analysis on ManifoldsGeometry, Differential.Global analysis (Mathematics)Manifolds (Mathematics)Differential Geometry.Global Analysis and Analysis on Manifolds.516.36Barletta Elisabetta307923Dragomir Sorin439634Shahid Mohammad Hasan1786037Al-Solamy Falleh R1786038MiAaPQMiAaPQMiAaPQBOOK9911015684403321Differential Geometry4317452UNINA