00955nam a22002411i 450099100285238970753620040407152726.0040624s1963 gw |||||||||||||||||ger b12987712-39ule_instARCHE-094539ExLDip.to Beni CulturaliitaA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l.937Wosnik, Bernhard487616Untersuchungen zur Geschichte Sullas :inaugural-Dissertation ... /vorgelegt von Bernhard WosnikWürzburg :[s.n.],1963IX, 125 p. ;21 cmRoma anticaStoriaSec. 1. a.C..b1298771202-04-1412-07-04991002852389707536LE001 SR II 8112001000033546le001C. 1-E0.00-l- 00000.i1359232412-07-04Untersuchungen zur Geschichte Sullas284097UNISALENTOle00112-07-04ma -gergw 0101110nam0 22002651i 450 UON0005489520231205102242.38220020107d1981 |0itac50 bachiCN||||p |||||Ying mei an yi yuMao Xiang[s.l.]Kuangwen Shuju Xinxing198176 p.21 cmLETTERATURA CINESENARRATIVADINASTIA QING (1644-1911)TESTIUONC004467FICIN VI AACINA - LETTERATURA CLASSICA (fino al 1911) - TESTIAMAO XiangUONV028913649356Kuangwen Shuju XinxingUONV254764650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00054895SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI CIN VI AA 665 N SI SA 95525 7 665 N LETTERATURA PUNJABI - POESIA E TEATROLETTERATURA CINESE - NARRATIVA - DINASTIA QING (1644-1911) - TESTIUONC006913Ying mei an yi yu1151554UNIOR03443nam 22005655 450 991102245770332120251208190012.03-031-97442-510.1007/978-3-031-97442-7(CKB)40851708900041(MiAaPQ)EBC32275519(Au-PeEL)EBL32275519(DE-He213)978-3-031-97442-7(OCoLC)1545003009(PPN)289059186(EXLCZ)994085170890004120250831d2025 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierFast Computation of Volume Potentials by Approximate Approximations /by Flavia Lanzara, Vladimir Maz'ya, Gunther Schmidt1st ed. 2025.Cham :Springer Nature Switzerland :Imprint: Springer,2025.1 online resource (516 pages)Lecture Notes in Mathematics,1617-9692 ;23783-031-97441-7 Chapter 1. Introduction -- Chapter 2. Quasi-interpolation -- Chapter 3. Approximation of integral operators -- Chapter 4. Some other cubature problems -- Chapter 5. Approximate solution of non-stationary problems -- Chapter 6. Integral operators over hyper-rectangular domains.This book introduces a new fast high-order method for approximating volume potentials and other integral operators with singular kernel. These operators arise naturally in many fields, including physics, chemistry, biology, and financial mathematics. A major impediment to solving real world problems is the so-called curse of dimensionality, where the cubature of these operators requires a computational complexity that grows exponentially in the physical dimension. The development of separated representations has overcome this curse, enabling the treatment of higher-dimensional numerical problems. The method of approximate approximations discussed here provides high-order semi-analytic cubature formulas for many important integral operators of mathematical physics. By using products of Gaussians and special polynomials as basis functions, the action of the integral operators can be written as one-dimensional integrals with a separable integrand. The approximation of a separated representation of the density combined with a suitable quadrature of the one-dimensional integrals leads to a separated approximation of the integral operator. This method is also effective in high-dimensional cases. The book is intended for graduate students and researchers interested in applied approximation theory and numerical methods for solving problems of mathematical physics.Lecture Notes in Mathematics,1617-9692 ;2378Approximation theoryNumerical analysisApproximations and ExpansionsNumerical AnalysisApproximation theory.Numerical analysis.Approximations and Expansions.Numerical Analysis.511.4Lanzara Flavia722520Mazʹi︠a︡ V. G41932Schmidt Günther0MiAaPQMiAaPQMiAaPQBOOK9911022457703321Fast Computation of Volume Potentials by Approximate Approximations4465018UNINA