00949nam0 22002651i 450 UON0005158520231205102228.28320020107d1980 |0itac50 bajpnJP||||p |||||"Aku" toedo bungakuTakehiko NoguchiTokyoAsahi Shinbunsha1980211 p.19 cmLetteratura GiapponeseUONC000719FIJPTōkyōUONL000031GIA VIGIAPPONE - LETTERATURAANOGUCHI TakehikoUONV032711651280Asahi ShinbunUONV246594650ITSOL20250228RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00051585SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI GIA VI 085 N SI SA 94319 7 085 N "Aku" toedo bungaku1145047UNIOR01349nam2 22003373i 450 TO0097563520251003044409.08813231334IT2002-4922 20130301d2001 ||||0itac50 baitaitz01i xxxe z01nˆ2: ‰Diritto industrialeNiccolò Abriani, Gastone Cottino, Marco RicolfiPadovaCEDAM2001XV, 855 p.25 cm.001TO009224812001 Trattato di diritto commercialediretto da Gastone Cottino2Diritto industrialeFIRCFIC021926E346.45048DIRITTO DELLA PROPRIETA IMMATERIALE. ITALIA21Abriani, NiccolòMILV123417070382762Cottino, GastoneCFIV018795070105890Ricolfi, MarcoRAVV050472070117102Cottino, G.CFIV267743Cottino, GastoneITIT-00000020130301IT-BN0095 TO00975635Biblioteca Centralizzata di Ateneov. 2;5.2;11.1 01TRA 29 TRADDC 01C 0800220415 VMA (0002 v. 2 (Precedente collocazione (C) 22 D 041)B 2012091220120912 01Diritto industriale68198UNISANNIO03173nam 22005895 450 991030015340332120200630061935.03-319-02441-810.1007/978-3-319-02441-7(CKB)3710000000078599(DE-He213)978-3-319-02441-7(SSID)ssj0001067281(PQKBManifestationID)11567100(PQKBTitleCode)TC0001067281(PQKBWorkID)11091937(PQKB)10734155(MiAaPQ)EBC3107026(PPN)176106057(EXLCZ)99371000000007859920131121d2014 u| 0engurnn|008mamaatxtrdacontentcrdamediacrrdacarrierCohomological Aspects in Complex Non-Kähler Geometry /by Daniele Angella1st ed. 2014.Cham :Springer International Publishing :Imprint: Springer,2014.1 online resource (XXV, 262 p. 7 illus.) Lecture Notes in Mathematics,0075-8434 ;2095Bibliographic Level Mode of Issuance: Monograph3-319-02440-X Preliminaries on (almost-) complex manifolds -- Cohomology of complex manifolds -- Cohomology of nilmanifolds -- Cohomology of almost-complex manifolds -- References.In these notes, we provide a summary of recent results on the cohomological properties of compact complex manifolds not endowed with a Kähler structure. On the one hand, the large number of developed analytic techniques makes it possible to prove strong cohomological properties for compact Kähler manifolds. On the other, in order to further investigate any of these properties, it is natural to look for manifolds that do not have any Kähler structure. We focus in particular on studying Bott-Chern and Aeppli cohomologies of compact complex manifolds. Several results concerning the computations of Dolbeault and Bott-Chern cohomologies on nilmanifolds are summarized, allowing readers to study explicit examples. Manifolds endowed with almost-complex structures, or with other special structures (such as, for example, symplectic, generalized-complex, etc.), are also considered.Lecture Notes in Mathematics,0075-8434 ;2095Geometry, DifferentialFunctions of complex variablesDifferential Geometryhttps://scigraph.springernature.com/ontologies/product-market-codes/M21022Several Complex Variables and Analytic Spaceshttps://scigraph.springernature.com/ontologies/product-market-codes/M12198Geometry, Differential.Functions of complex variables.Differential Geometry.Several Complex Variables and Analytic Spaces.514.223Angella Danieleauthttp://id.loc.gov/vocabulary/relators/aut524797MiAaPQMiAaPQMiAaPQBOOK9910300153403321Cohomological aspects in complex non-Kähler geometry820739UNINA