03427nam 22006255 450 99646647470331620220204012054.03-540-47877-910.1007/BFb0078925(CKB)1000000000437533(SSID)ssj0000321942(PQKBManifestationID)12064706(PQKBTitleCode)TC0000321942(PQKBWorkID)10281221(PQKB)11480993(DE-He213)978-3-540-47877-5(MiAaPQ)EBC5610970(Au-PeEL)EBL5610970(OCoLC)1079007266(MiAaPQ)EBC6842599(Au-PeEL)EBL6842599(OCoLC)793079025(PPN)155238000(EXLCZ)99100000000043753320121227d1987 u| 0engurnn|008mamaatxtccrCommuting Nonselfadjoint Operators in Hilbert Space[electronic resource] Two Independent Studies /by Moshe S. Livsic, Leonid L. Waksman1st ed. 1987.Berlin, Heidelberg :Springer Berlin Heidelberg :Imprint: Springer,1987.1 online resource (VI, 118 p.) Lecture Notes in Mathematics,0075-8434 ;1272Bibliographic Level Mode of Issuance: Monograph3-540-18316-7 Classification of commuting non-selfadjoint operators is one of the most challenging problems in operator theory even in the finite-dimensional case. The spectral analysis of dissipative operators has led to a series of deep results in the framework of unitary dilations and characteristic operator functions. It has turned out that the theory has to be based on analytic functions on algebraic manifolds and not on functions of several independent variables as was previously believed. This follows from the generalized Cayley-Hamilton Theorem, due to M.S.Livsic: "Two commuting operators with finite dimensional imaginary parts are connected in the generic case, by a certain algebraic equation whose degree does not exceed the dimension of the sum of the ranges of imaginary parts." Such investigations have been carried out in two directions. One of them, presented by L.L.Waksman, is related to semigroups of projections of multiplication operators on Riemann surfaces. Another direction, which is presented here by M.S.Livsic is based on operator colligations and collective motions of systems. Every given wave equation can be obtained as an external manifestation of collective motions. The algebraic equation mentioned above is the corresponding dispersion law of the input-output waves.Lecture Notes in Mathematics,0075-8434 ;1272Mathematical analysisAnalysis (Mathematics)Analysishttps://scigraph.springernature.com/ontologies/product-market-codes/M12007Mathematical analysis.Analysis (Mathematics).Analysis.515Livsic Moshe Sauthttp://id.loc.gov/vocabulary/relators/aut56199Waksman Leonid Lauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK996466474703316Commuting nonselfadjoint operators in Hilbert space262371UNISA01649nam0 22003131i 450 UON0004374020231205102157.24320020107d1963 |0itac50 barusSU|||| 1||||Istorija arxitektury AzerbajdzhanaAzarbajjan me'marlyghy tarixiM. Usejnov, L. Bretanickij, A. SalamzadeMoskvaGosudarstvennoe Izdatel'stvo Literatury po Stroitel'stvu i Arxitektury1963396 p.ill.28 cIn testa al front. : Akademija Nauk Azerbajdzanskoj SSR, Institut Arxitektury i Iskusstvo = Azarbajjan SSR Elmlar Akademijasy, Me'marlyg va Injasanat InstitutuUON00356109Azarbajjan me'marlyghy tarixiARCHITETTURAAZERBAIJANUONC010546FIRUMoskvaUONL003152CAU XICAUCASO E ARMENIA - ARCHITETTURA E URBANISTICAAUSEJNOVMikajyl A.UONV027734648835BRETANICKIJLeonid S.UONV027176648454SALAMZADEÄbdülvaḥab R.UONV027735648836Gosudarstvennoe Izdatel'stvo Literatury po Stroitel'stvu i ArchitekturyUONV252855650ITSOL20241213RICAUON00043740SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI CAU XI 013 SI AR 751 7 013 SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI MUSEO SCERRATO 267 SI MR 79125 7 267 Istorija arxitektury Azerbajdzhana1157801UNIOR