07821nam 22004573 450 991105682800332120250827080354.00-443-24119-80-443-24118-X(CKB)40388316300041(MiAaPQ)EBC32267544(Au-PeEL)EBL32267544(OCoLC)1535400343(EXLCZ)994038831630004120250827d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierModeling and Numerical Simulation of Proton Exchange Membrane Fuel Cells Concepts, Methods, and Challenges1st ed.Chantilly :Elsevier,2025.©2025.1 online resource (321 pages)Front Cover -- Modeling and Numerical Simulation of Proton Exchange Membrane Fuel Cells -- Copyright Page -- Contents -- 1 Introduction to proton exchange membrane fuel cell -- 1.1 The development of proton exchange membrane fuel cells -- 1.1.1 An overview of proton exchange membrane fuel cells -- 1.1.2 History and early development of fuel cells -- 1.1.3 Current implementations and future milestones -- 1.1.4 State-of-the-art of proton exchange membrane fuel cell components and operation -- 1.1.5 Operation of proton exchange membrane fuel cells -- 1.1.6 Proton exchange membrane -- 1.1.7 Catalysts and electrodes -- 1.1.8 Gas diffusion layers -- 1.1.9 Bipolar plates and current collectors -- 1.1.10 Gaskets -- 1.2 Objectives and importance of proton exchange membrane fuel cell modeling -- 1.2.1 Overview of modeling and simulation -- 1.2.2 Benefits and applications of modeling proton exchange membrane fuel cells -- 1.3 The current status of proton exchange membrane fuel cell modeling and simulation -- 1.3.1 Modeling approaches and techniques -- 1.3.2 Computational fluid dynamics modeling -- 1.3.3 Challenges in computational fluid dynamic modeling -- References -- 2 Single-phase transport modeling in proton exchange membrane fuel cell -- 2.1 Mathematical formulation of physical and electrochemical phenomena in proton exchange membrane fuel cell components -- 2.2 Summary of key fuel cell parameters and physical and electrochemical properties -- 2.3 Modeling of air-cooled proton exchange membrane fuel cell -- 2.3.1 Overview -- 2.3.2 Computational domain -- 2.3.3 Proton exchange membrane fuel cell model validation -- 2.3.3.1 Stack assembly -- 2.3.3.2 Test procedure -- 2.3.4 Discussion on air-cooled proton exchange membrane fuel cell performance -- 2.3.5 Summary -- 2.4 Exercise -- Appendix 2.1 -- References.3 Multiphase transport modeling in proton exchange membrane fuel cell -- 3.1 Overview of multiphase models -- 3.1.1 Multiphase mixture formulation -- 3.1.2 Finite volume method -- 3.1.3 Direct numerical simulation -- 3.1.4 Pore network models -- 3.1.5 Lattice Boltzmann method -- 3.2 Multiphase flow in gas flow channels and porous electrodes -- 3.2.1 Multiphase mixture model -- 3.2.2 Lattice Boltzmann model -- 3.2.2.1 Model description -- 3.2.2.2 Model validation -- 3.2.2.2.1 Bubble test -- 3.2.2.2.2 Static contact angle test -- 3.3 Summary of the key multiphase model parameters and physical and electrochemical proprieties -- 3.4 Characterization analysis of catalyst layer and gas diffusion layer using lattice Boltzmann model -- 3.5 Numerical analysis of liquid water from generation and accumulation to motion in proton exchange membrane fuel cell -- References -- 4 Modeling the cold start process of proton exchange membrane fuel cells -- 4.1 Three-dimensional nonisothermal transient cold start model of proton exchange membrane fuel cell -- 4.1.1 Mass and momentum conservation -- 4.1.2 Species transport -- 4.1.2.1 Reactant transport -- 4.1.2.2 Water transport -- 4.1.3 Ice formation -- 4.1.4 Charge conservation -- 4.1.5 Energy conservation -- 4.1.6 Electrochemical kinetics -- 4.2 Summary of the key cold start parameters and physical and electrochemical properties -- 4.3 The role of catalyst layer pore morphology on cold start process of proton exchange membrane fuel cell -- 4.3.1 Overview of the role of catalyst layer pore morphology -- 4.3.2 Current status of modeling -- 4.3.3 Effect of cathode catalyst layer mesoscopic morphology -- 4.3.4 Physical Domain -- 4.3.5 Results and discussion -- 4.3.6 Summary -- 4.4 The impact of gas diffusion layer intrusion on the cold start performance -- 4.4.1 Overview of the impact of gas diffusion layer intrusion.4.4.2 Current status of modeling -- 4.4.3 Effect of gas diffusion layer intrusion and deformation -- 4.4.4 Results and Discussion -- 4.4.5 Summary -- 4.5 A Comprehensive understanding of the endplate assembly effect on cold start behavior in proton exchange membrane fuel cell stacks -- 4.5.1 An overview -- 4.5.2 Current status of modeling -- 4.5.3 Effect of endplate assembly on cold start behavior -- 4.5.4 Results and discussion -- 4.5.5 Summary -- 4.6 The influence of key coolant circulation parameters on the cold start capability -- 4.6.1 An overview -- 4.6.2 Current status of modeling -- 4.6.3 Effect of key coolant circulation parameters -- 4.6.4 Results and discussion -- 4.6.5 Summary -- 4.7 The impact of nonuniform and maldistributed inflow of reactants and coolant on the cold start -- 4.7.1 An overview -- 4.7.2 Current status of modeling -- 4.7.3 Impact of nonuniform and maldistributed inflow of reactants and coolant -- 4.7.4 Results and discussion -- 4.7.5 Summary -- 4.8 Major challenges and perspectives on cold start simulation -- 4.9 Exercise -- Appendix 4.1 -- References -- 5 Degradation and lifetime modeling of proton exchange membrane fuel cell -- 5.1 Stress-induced degradation mechanisms in proton exchange membrane fuel cells -- 5.1.1 Stacking stresses -- 5.1.2 Hygro-thermal stresses -- 5.1.3 Freeze/thaw stresses -- 5.2 Physics-based modeling methods -- 5.2.1 Membrane degradation physical-based method -- 5.2.2 Catalyst layer degradation mechanism model -- 5.2.3 Gas diffusion layer degradation physics-based method -- 5.2.4 Empirical degradation physics-based method -- 5.2.5 Semiempirical degradation physics-based method -- 5.2.6 Summary -- 5.3 Data-driven modeling methods -- 5.3.1 Artificial neural network model -- 5.3.2 Support vector machine model -- 5.3.3 Gaussian process -- 5.3.4 Fuzzy logic model.5.3.5 Convolutional neural network-based models -- 5.3.6 Summary -- 5.4 Major challenges and perspectives on degradation modeling -- References -- 6 Recent progress on multiscale and multidimensional modeling of proton exchange membrane fuel cell -- 6.1 Multidimensional modeling of proton exchange membrane fuel cells -- 6.2 Microstructure scale modeling of proton exchange membrane fuel cell components -- 6.3 Nanoscale modeling of proton exchange membrane fuel cell components -- 6.3.1 Molecular dynamics simulations -- 6.3.2 Density functional theory -- 6.3.3 Continuum models -- 6.4 Multiscale coupled models -- 6.5 Major challenges and perspectives on multiscale modeling -- References -- Index -- Back Cover.Modeling and Numerical Simulation of Proton Exchange Membrane Fuel Cells: Concept, Methods, and Challenges provides a concise guide to the modeling of PEM fuel cells.The book offers detailed methodologies, codes, and algorithms on every aspect of PEM fuel cells, from cold start to degradation.621.312429Jiang Fangming1890126Dafalla Mohmed Ahmed1890127Lin Wei736504MiAaPQMiAaPQMiAaPQBOOK9911056828003321Modeling and Numerical Simulation of Proton Exchange Membrane Fuel Cells4531747UNINA