00531nus0 2200205 i 450 TSA001943420251003044415.019970423a19979999||||0itac50 baitbzu |||||||I percorsiMilanoF. Angeli[1997]-Numero di codice: 1134.I percorsi. Testi.CFI0386497ITIT-00000019970423IT-NA0079 TSA0019434 01 AG BNPercorsi61066UNISANNIO10930nam 22005053 450 991104522530332120250827080354.00-443-18599-90-443-18598-0(CKB)40388317000041(MiAaPQ)EBC32270311(Au-PeEL)EBL32270311(OCoLC)1535405017(EXLCZ)994038831700004120250827d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierAdvances in Ceramic Matrix Composites3rd ed.Chantilly :Elsevier Science & Technology,2025.©2026.1 online resource (1576 pages)Woodhead Publishing Series in Composites Science and Engineering SeriesFront Cover -- Advances in Ceramic Matrix Composites -- About the Series -- Advances in Ceramic Matrix CompositesWoodhead Publishing Series in Composites Science and EngineeringThird EditionEdited by ... -- Copyright -- Contents -- Contributors -- Acknowledgments -- 1 - Advances in ceramic matrix composites: Introduction -- 1.1 Advances in ceramic-matrix composites -- 1.2 Scope of this book (third edition) -- References -- 1 - Parts and processing -- 2 - Processing, properties, and applications of ceramic matrix composites, SiCf/SiC: An overview -- 2.1 Introduction -- 2.2 Novel interphase materials and new fabrication methods for traditional interphase materials -- 2.2.1 Electrophoretic deposition -- 2.2.2 Dip-coating of the BN interphase -- 2.2.3 Interphase with oxidation resistance -- 2.3 Novel matrix manufacturing processes -- 2.3.1 Electrophoretic deposition -- 2.3.2 Hybrid technologies -- 2.4 Nano-reinforcement -- 2.5 Dielectric properties and microwave-absorbing applications -- 2.6 Conclusion and future trends -- References -- Further reading -- 3 - Nanoceramic matrix composites: Types, processing, and applications -- 3.1 Introduction -- 3.2 Nanostructured composite materials -- 3.3 Bulk ceramic nanocomposites -- 3.3.1 Si3N4-SiC nanocomposites -- 3.3.2 Al2O3-SiC nanocomposites -- 3.3.3 Nanocomposites based on carbon nanotubes -- 3.4 Nanoceramic composite coatings -- 3.5 Conclusions -- References -- 4 - Al2O3-SiC nanocomposites: Preparation, microstructure and properties -- 4.1 Introduction -- 4.1.1 Conventional preparation of the composites -- 4.1.2 Unconventional preparation of the composites -- 4.2 Experimental methods -- 4.2.1 Sample preparation -- 4.2.2 Materials' characterization -- 4.3 Results and discussion -- 4.3.1 Polymer decomposition -- 4.3.2 Thermodynamic analysis of the system -- 4.3.3 Densification and microstructure.4.3.4 Sinter hot isostatic pressing -- 4.3.5 Hot pressing -- 4.3.6 Mechanical properties and wear resistance -- 4.3.7 Creep -- 4.4 Conclusions -- Acknowledgments -- References -- Further reading -- 5 - Advances in manufacture of ceramic matrix composites by infiltration techniques -- 5.1 Introduction -- 5.2 Classification of infiltration techniques -- 5.3 Reinforcing fibers -- 5.3.1 Fiber architecture -- 5.3.2 Fiber materials -- 5.4 Interphases -- 5.5 Polymer infiltration and pyrolysis -- 5.5.1 Introduction -- 5.5.2 Preceramic polymers -- 5.5.3 Polymer infiltration and pyrolysis process description -- 5.5.4 Advantages and disadvantages of polymer infiltration and pyrolysis -- 5.6 Chemical vapor infiltration -- 5.6.1 Introduction -- 5.6.2 Types of chemical vapor infiltration processes -- 5.6.3 Chemical vapor infiltration process description -- 5.6.4 Advantages and disadvantages of chemical vapor infiltration -- 5.7 Reactive melt infiltration -- 5.7.1 Introduction -- 5.7.2 Liquid silicon infiltration -- 5.7.2.1 Liquid silicon infiltration process description -- 5.7.2.2 Advantages and disadvantages of liquid silicon infiltration -- 5.7.3 Direct melt oxidation -- 5.7.3.1 Direct melt oxidation process description -- 5.7.3.2 Advantages and disadvantages of direct melt oxidation -- 5.8 Slurry infiltration -- 5.8.1 Introduction -- 5.8.2 Slurry infiltration process description -- 5.8.3 Advantages and disadvantages of slurry infiltration -- 5.9 Sol-gel infiltration -- 5.9.1 Introduction -- 5.9.2 Sol-gel infiltration process description -- 5.9.3 Advantages and disadvantages of sol-gel infiltration -- 5.10 Combined infiltration methods -- 5.10.1 Combination of slurry infiltration with polymer infiltration and pyrolysis -- 5.10.2 Combination of slurry infiltration with liquid silicon infiltration.5.10.3 Combination of chemical vapor infiltration with liquid silicon infiltration -- 5.10.4 Combination of chemical vapor infiltration with polymer infiltration and pyrolysis -- 5.11 Future trends in the fabrication of ceramic matrix composites by infiltration methods -- References -- Further reading -- 6 - Heat treatment for strengthening silicon carbide ceramic matrix composites -- 6.1 Introduction -- 6.1.1 Ceramic matrix composites -- 6.2 SiC/TiB2 particulate composites -- 6.3 Sintering of SiC/TiB2 composites -- 6.4 Fracture toughness -- 6.4.1 Fracture toughness of sintered SiC/TiB2 composites -- 6.4.2 Effect of heat treatment on fracture toughness of SiC/TiB2 composites -- 6.5 Fracture strength -- 6.5.1 Fracture strength of sintered SiC/TiB2 composites -- 6.5.2 Effect of heat treatment on the fracture strength of SiC/TiB2 composites -- 6.5.3 Effect of TiB2 content on crack formation -- 6.6 Conclusions -- 6.7 New developments -- References -- 7 - Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites -- 7.1 Introduction -- 7.2 Direct hot pressing -- 7.2.1 Oxides -- 7.2.2 Carbides -- 7.2.3 Borides -- 7.2.4 Nitrides -- 7.3 Hot isostatic pressing -- 7.3.1 Oxides -- 7.3.2 Carbides -- 7.3.3 Borides -- 7.3.4 Nitrides -- 7.4 Future trends -- 7.5 Conclusion -- Acknowledgments -- References -- 8 - Hot pressing of tungsten carbide ceramic matrix composites -- 8.1 Introduction -- 8.2 Powder characterization -- 8.3 Thermal analysis and phase transformation during hot pressing of WC/Al2O3 composites -- 8.4 Effects of Al2O3 content on the microstructure and mechanical properties of WC/Al2O3 composites -- 8.4.1 Microstructure evolution -- 8.4.2 Mechanical properties -- 8.5 Hot pressing of WC/40vol% Al2O3 composites -- 8.5.1 Densification analysis -- 8.5.2 Microstructure evolution.8.5.3 Effects of sintering temperature and holding time on the properties of sintered samples -- 8.6 Future trends -- 8.7 Conclusion -- References -- 9 - Strengthening alumina ceramic matrix nanocomposites using spark plasma sintering -- 9.1 Introduction -- 9.1.1 Synthesis of Al2O3-Cr2O3/Cr3C2 nanocomposites: Chemical vapor deposition and spark plasma sintering -- 9.1.2 Novel synthesis of ceramic nanocomposite using spark plasma sintering -- 9.1.2.1 Advantages of spark plasma sintering over other synthesis methods -- 9.1.3 Analyzing mechanical properties of ceramic nanocomposites -- 9.2 Processing and characterization of Al2O3-Cr2O3/Cr carbide nanocomposites -- 9.2.1 Sample preparation -- 9.2.2 Densification using spark plasma sintering -- 9.2.3 Microstructure -- 9.2.4 Testing mechanical properties: Density, fracture strength, and toughness -- 9.2.5 Nanoindentation test -- 9.3 Properties of Al2O3-Cr2O3/Cr carbide nanocomposites -- 9.3.1 Characterization of fluidized powders -- 9.3.2 Analysis of density, fracture strength, and toughness -- 9.3.3 Secondary particles strengthening -- 9.3.4 Solid solution strengthening -- 9.3.5 Nanoindentation analysis -- 9.4 Conclusions -- Acknowledgments -- References -- 10 - Cold ceramics low-temperature processing of ceramics for applications in composites -- 10.1 Introduction -- 10.2 Understanding the heterogeneous structure of ceramic raw materials -- 10.2.1 Size heterogeneity -- 10.2.2 Chemical and structural heterogeneities -- 10.2.3 Heterogeneity in chemical reactivity -- 10.3 Ceramic products with low energy content: Dense aluminous cements -- 10.4 Ceramic products with low energy content: Textured materials -- 10.5 Ceramic products with low energy content: Porous materials -- 10.6 Ceramic products with low energy content: Composite materials -- 10.6.1 Lime and hemp fibers.10.6.2 Portland cement and hemp fibers -- 10.6.3 Tape casting of aluminous cement composites -- 10.7 Conclusion -- Appendix: Basic concepts in rheology -- Acknowledgments -- References -- Further reading -- 11 - An overview of tungsten carbide coating by electro-discharge coating using ceramic composite tool -- 11.1 Introduction -- 11.2 Preparation of ceramic composite tools by powder metallurgy route for electro-discharge coating applications -- 11.3 Powder metallurgy process parameters -- 11.3.1 Composition of tool -- 11.3.2 Particle size of the initial powder -- 11.3.3 Compaction pressure -- 11.3.4 Sintering temperature -- 11.4 Electro-discharge machining process parameters -- 11.4.1 Peak current -- 11.4.2 Open circuit voltage -- 11.4.3 Pulse-on-time -- 11.4.4 Duty cycle -- 11.4.5 Polarity -- 11.4.6 Dielectric fluid -- 11.5 Output performance measures in electro-discharge coating process -- 11.5.1 Material deposition rate -- 11.5.2 Tool wear rate -- 11.5.3 Coated-layer thickness -- 11.5.4 Micro-hardness of coated layer -- 11.5.5 Wear rate of coated surface -- 11.6 Surface morphology and surface integrity of tungsten carbide coated layer -- 11.7 Conclusions -- Acknowledgments -- References -- 12 - MAX phase ceramic matrix composites: Processing, properties, and applications -- 12.1 Introduction -- 12.2 Particle-reinforced MAX CMCs -- 12.2.1 Ex situ formed MAX CMCs -- 12.2.1.1 SiC/MAX CMCs -- 12.2.1.2 TiC/MAX CMCs -- 12.2.1.3 WC/MAX CMCs -- 12.2.1.4 ZrC/MAX CMCs -- 12.2.1.5 cBN/MAX CMCs -- 12.2.1.6 TiB2/MAX CMCs -- 12.2.2 In situ formed MAX CMCs -- 12.2.2.1 In situ SiC/MAX CMCs -- 12.2.2.2 In situ TiC/MAX CMCs -- 12.2.2.3 In situ Al2O3/MAX CMCs -- 12.2.2.4 In situ TiB2-SiC/MAX CMCs -- 12.2.2.5 In situ TiB2-TiC/MAX CMCs -- 12.3 Fiber and whisker-reinforced MAX CMCs -- 12.3.1 Cf/MAX CMCs -- 12.3.2 Al2O3f/MAX CMCs -- 12.3.3 SiCf/MAX CMCs.12.3.4 SiCw/MAX CMCs.Advanced ceramics and composite materials are increasingly being utilized as components in batteries, fuel cells, sensors, high-temperature electronics, membranes, and high-end biomedical devices, in addition to their traditional use in seals, valves, implants, and high-temperature and wear components.Woodhead Publishing Series in Composites Science and Engineering Series620.14Low I. M1683212Li ShiBo1859981Hu Chunfeng1859982MiAaPQMiAaPQMiAaPQBOOK9911045225303321Advances in Ceramic Matrix Composites4464414UNINA