07381nam 22004453 450 991104241120332120251108060308.09781118572863(CKB)42023267100041(MiAaPQ)EBC32394547(Au-PeEL)EBL32394547(EXLCZ)994202326710004120251108d2026 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierPiezoelectric Materials Properties, Applications and Devices1st ed.Newark :John Wiley & Sons, Incorporated,2026.©2026.1 online resource (251 pages)Wiley Series in Materials for Electronic and Optoelectronic Applications Series9781118572887 Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1 Introduction -- 1.1 Active and Sensory Materials for Smart Systems -- 1.2 Energy Harvesting Materials -- 1.3 Multifunctional Materials, Devices, Systems and Structures -- 1.4 Piezoelectric, Pyroelectric and Ferroelectric Materials -- References -- Chapter 2 Piezoelectric Fundamentals -- 2.1 Piezoelectric Materials -- 2.2 Ferroelectric Materials -- 2.2.1 Non-centrosymmetric Unit Cells -- 2.2.2 Lead Zirconate Titanate (Pb(ZrxTi1−x)O3, PZT) Ferroelectrics -- 2.2.3 Ferroelectric Domains -- 2.2.4 Poling of Ferroelectric Materials -- 2.3 Pyroelectric Materials -- 2.4 Piezoelectric Forms: Bulk, Thin Films and Fibre Composites -- 2.4.1 Piezoelectric Composites and Connectivity -- 2.4.2 Active Fibre Composites and Macro-Fibre Composites -- 2.5 Concluding Remarks -- References -- Chapter 3 Properties of Piezoelectric Materials -- 3.1 Introduction -- 3.2 Constitutive Equations -- 3.2.1 Alternative Single-Axis Formulations -- 3.2.2 Multi-Axis Linear Model -- 3.2.2.1 Example Piezoelectric Element -- 3.2.3 Coupling Coefficients -- 3.3 Polarisation-Electric Field Response of a Ferroelectric -- 3.4 Strain-Field Response of a Ferroelectric -- 3.5 Material Properties and Selection of Materials -- 3.5.1 Barium Titanate (BaTiO3) -- 3.5.2 Lead Zirconate Titanate (PZT, Pb (Zr, Ti)O3) -- 3.5.3 Ferroelectric Polymers -- 3.6 Mechanical Depolarisation of Ferroelectric Materials -- 3.7 Creep of Ferroelectric Materials -- 3.8 Strain Limits of Piezoelectric Actuators (Expansion) -- 3.9 Strain Limits of Piezoelectric Actuators (Contraction) -- 3.10 Resonance Behaviour of Piezoelectric Materials and Ceramic Structures -- 3.11 Ageing of Ferroelectrics -- 3.12 Temperature Limits and Self-Heating -- 3.13 Cyclic Operation - Frequency Effects.3.13.1 Self-Heating Due to Ferroelectric Hysteresis -- 3.13.2 Current Requirements During Frequency Cycling -- 3.14 Thermal Expansion Coefficient -- 3.15 Summary -- References -- Chapter 4 Piezoelectric Actuators -- 4.1 Introduction -- 4.2 Free Displacement and Blocking Force -- 4.3 Single-Layer Actuator -- 4.4 Stack Actuators -- 4.4.1 Actuator Preloading -- 4.4.2 Piezoelectric Stack Actuator Selection Example -- 4.4.3 Optimum Stack Dimensions -- 4.4.4 Piezoelectric Actuator Stack Sizing Guidelines -- 4.5 Rectangular Bending Actuators (Bimorphs) -- 4.5.1 Bimorph Characteristics -- 4.5.2 Other Rectangular Benders -- 4.6 Ring Benders -- 4.6.1 Ring Bender Deformation Analysis -- 4.6.2 Ring Bender Free Displacement and Blocking Force -- 4.6.3 Other Circular Benders -- 4.7 Mechanical Amplification -- 4.8 Complex Actuator Design -- 4.8.1 Motion Accumulation -- 4.8.2 Ultrasonic Motors -- 4.9 Concluding Remarks -- References -- Chapter 5 Sensors -- 5.1 Introduction -- 5.2 Piezoelectric Accelerometers -- 5.2.1 Accelerometer Modes of Operation (Compressive, Shear and Flexural d33 and d15) -- 5.2.2 Material Selection for Accelerometers -- 5.3 Force and Pressure Sensors -- 5.3.1 High-Frequency Capability -- 5.3.2 Sensor Sensitivity -- 5.4 Temperature and Thermal Effects -- 5.5 Hydrophones -- 5.5.1 Background to Hydrostatic Coefficients -- 5.5.2 Derivation of Performance Indicators for Hydrophone Materials -- 5.5.3 Hydrophone Construction -- 5.6 Piezocomposite Sensors -- 5.6.1 Production of Piezoelectric Composites -- 5.7 Conclusions -- References -- Chapter 6 Energy Harvesting -- 6.1 Introduction -- 6.2 Concept of Piezoelectric-Based Energy Harvesting -- 6.3 Piezoelectric Properties and Performance Figures of Merit (FoMs) -- 6.3.1 Derivation of Harvesting Figures of Merit (FoMs) -- 6.3.2 Mechanical Energy Input.6.3.3 Converting the Mechanical (Input) into Electrical Energy (Stored) -- 6.3.4 Producing an Output from the Stored Electrical Energy -- 6.4 Case Study: Piezoelectric Hydraulic Ripple Energy Harvesting -- 6.5 Pyroelectric Materials and Thermal Energy Harvesting -- 6.5.1 Performance Figures of Merit for Pyroelectric Harvesting and Sensing -- 6.6 Summary -- References -- Chapter 7 Drive Electronics and Control -- 7.1 Introduction -- 7.2 Op-Amp Circuits -- 7.3 Voltage Amplifiers for Driving Actuators -- 7.4 Charge Amplifiers for Driving Actuators -- 7.5 Regenerative Amplifiers -- 7.6 Position Sensors for Feedback Control -- 7.6.1 Linear Variable Differential Transformer (LVDT) -- 7.6.2 Eddy Current Sensor -- 7.6.3 Capacitive Sensor -- 7.6.4 Laser Triangulation Sensor -- 7.6.5 Strain Gauge Sensor -- 7.7 Closed-Loop Controllers: Case Study -- 7.8 Signal Conditioning for Piezoelectric Sensors -- 7.8.1 Op-Amp Filtering Circuits -- 7.8.2 Signal Conditioning in Detail -- 7.9 Concluding Remarks -- References -- Chapter 8 Case Studies -- 8.1 Introduction -- 8.2 Piezoelectric Valve Actuation -- 8.2.1 Internal Combustion Engine Fuel Injectors -- 8.2.2 Hydraulic Servo Valves -- 8.3 Piezoelectric Pumps -- 8.3.1 Introduction -- 8.3.2 Piezo Pump Example -- 8.4 Vibration Control of Flexible Structures -- 8.4.1 Smart Structure -- 8.4.2 Dynamic Modelling -- 8.4.3 Derivative Feedback Control -- 8.5 A Case Study of Actuator Self-Heating -- 8.5.1 Model for Temperature Increase Due to Hysteresis -- 8.5.2 Testing Actuator Self-Heating -- 8.5.3 Comparing Actuator Test Data with Expected Behaviour from Model -- 8.6 Piezoelectric Actuation of Bistable Morphing Structures -- 8.6.1 Composite Structure Manufacture -- 8.6.2 Actuator Materials and Attachment -- 8.6.3 Change in Laminate Shape in Response to Piezoelectric Actuation -- 8.7 Force Sensors, Shear Sensors and Hydrophones.8.7.1 Freeze Casting to Produce Porous Ceramics -- 8.7.2 Fabrication of Strain Sensor (d31-Mode) -- 8.7.3 d33-Mode and d15-Mode Piezocomposite Sensors -- 8.8 Concluding Remarks -- References -- Index -- EULA.Authoritative reference making piezoelectric materials technology more accessible by crossing the boundary between fundamental materials physics and applied engineering Piezoelectric Materials provides a comprehensive overview of the subject, an important class of smart materials which are useful as both actuators and sensors, covering materials.Wiley Series in Materials for Electronic and Optoelectronic Applications Series537.2446Bowen Christopher R768793MiAaPQMiAaPQMiAaPQBOOK9911042411203321Piezoelectric Materials4458788UNINA