11196nam 22004933 450 991103852610332120251031080323.09781394267378(CKB)41826618900041(MiAaPQ)EBC32379070(Au-PeEL)EBL32379070(EXLCZ)994182661890004120251031d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierEnergy Management Strategies for Multi-Vectored Energy Hubs to Achieve Low Carbon Societies1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2026.1 online resource (347 pages)9781394267361 Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Evaluation of Power/Energy System to the Modern Multi‐Vectored Energy Hubs (MV‐EHs) -- 1.1 Introduction -- 1.2 Problem Statement -- 1.3 Objective -- 1.4 Theoretical Framework -- 1.5 Evaluation Framework -- 1.5.1 Evaluation Criteria of MV‐EHs -- 1.5.2 Data Collection -- 1.6 Discussion -- 1.6.1 Regulatory and Policy Framework -- 1.6.2 Challenges and Future Trends -- 1.7 Conclusion -- References -- Chapter 2 Introduction of Transactive Energy Management in a Multi‐Energy Networked System -- 2.1 Introduction -- 2.2 Problem Statement -- 2.3 Objective -- 2.4 Conceptual Framework -- 2.5 Multi‐Energy Networked System -- 2.6 Integration of Transactive Energy Management -- 2.6.1 Objective function -- 2.6.2 Constraints -- 2.6.2.1 Power Balance Constraint -- 2.6.2.2 Power Generation Constraint -- 2.6.3 PV Constraints -- 2.6.4 Battery Storage Constraints -- 2.6.5 Market Constraints -- 2.6.6 Working Cases of Microgrids -- 2.6.6.1 First Case -- 2.6.6.2 Second Case -- 2.6.7 Benefits of Integration -- 2.6.8 Challenges of Integration -- 2.7 Discussion -- 2.7.1 Advantages -- 2.7.1.1 Enhanced Efficiency -- 2.7.1.2 Expanded Adaptability -- 2.7.1.3 Further Developed Strength -- 2.7.2 Disadvantages -- 2.7.2.1 Complex Framework Joining -- 2.7.2.2 Information About Executives and Security -- 2.7.2.3 Administrative and Market Boundaries -- 2.7.3 Challenges -- 2.7.3.1 Technical Challenges -- 2.7.3.2 Regulatory Challenges -- 2.7.4 Future Directions -- 2.7.5 Possible Improvements and Innovations in Transactive Energy Management -- 2.8 Conclusion -- References -- Chapter 3 Energy Management Strategies for Optimal Scheduling of Multi‐Energy Network Hubs -- 3.1 Introduction -- 3.1.1 Background -- 3.1.2 Related Work -- 3.2 System Architecture and Problem Formulation.3.2.1 System Architecture -- 3.3 Problem Formulation -- 3.3.1 DSO Objective Function -- 3.3.2 EH Coordinator Objective Function -- 3.3.3 Electrical Network -- 3.3.4 Thermal Network -- 3.3.5 Supply-demand Balance in EHs -- 3.3.6 Multi‐Objective Optimization Formulation for DSO and EH Coordinator -- 3.3.7 Bargaining Game Between EHs -- 3.3.8 Economic Scheduling Model of Cooperative EHs -- 3.4 Results and Discussion -- 3.4.1 Case 1: Non‐cooperative Operation of EHs -- 3.4.2 Case 2: Cooperative Operation of EHs -- 3.5 Conclusion -- References -- Chapter 4 Impact of Hydrogen and Power‐to‐Gas Technology on MV‐EHs -- 4.1 Introduction -- 4.2 Objectives -- 4.3 Hydrogen Storage Technology -- 4.4 Power‐to‐Gas (P2G) Technologies -- 4.4.1 System Components -- 4.4.2 Integration with Power Systems -- 4.5 Role of Hydrogen in Sustainable MV‐EHs -- 4.5.1 Environmental Impact -- 4.5.2 Economic Considerations -- 4.5.3 Case Study and Examples -- 4.6 Conclusion -- References -- Chapter 5 Modeling and Analysis of MV‐EHs with Advanced Energy Storage Units -- 5.1 Introduction -- 5.2 Evolution of Energy Hubs, Their Components, Benefits, and Classification -- 5.2.1 Energy Hubs: Basic Definition and Structure -- 5.2.2 The Background of the EH Methodology -- 5.2.3 Elements of Energy Hubs -- 5.2.3.1 Adapting Converters -- 5.2.3.2 Converters for Switching -- 5.2.4 Benefits of Energy Hubs -- 5.2.4.1 Management of Incorporated Energy -- 5.2.4.2 Enhanced Effectiveness -- 5.2.4.3 Improved Adaptability -- 5.2.4.4 Savings on Costs -- 5.2.4.5 Diminished Emissions of Carbon -- 5.2.4.6 Adaptability and Dependability -- 5.2.4.7 Local Production and Storage of Energy -- 5.2.4.8 Assistance with Electric Cars (EVs) -- 5.2.4.9 Reliability in Scale -- 5.2.4.10 Information and Tracking -- 5.2.4.11 Engagement in the Energy Market -- 5.2.4.12 Support for Regulation and Policy.5.3 Multi‐Vector Energy Hubs -- 5.3.1 Different Types of Interactions and Interdependencies Among Energy Vectors -- 5.3.2 Interdependencies Between Natural Gas and Electricity Networks -- 5.3.3 Interdependencies Between District Heat and Electricity Networks -- 5.3.4 Interdependencies Between Natural Gas, District Heating, and Electricity Networks -- 5.3.5 Advantages of MV‐EHs -- 5.3.6 Challenges in MV‐EHs -- 5.3.6.1 Technical Difficulties -- 5.3.6.2 The Financial Challenges -- 5.3.6.3 Social and Environmental Challenges -- 5.4 Role of Advanced Energy Storage Technologies in MV‐EHs -- 5.4.1 Flywheel Energy Storage -- 5.4.1.1 Significant Progress to Improve the Energy Storage Performance of Flywheels -- 5.4.1.2 Challenges in Integrating Flywheels into MV‐EHs -- 5.4.2 CAES Technology -- 5.4.2.1 Challenges Faced by Compressed Air Storage Systems in MV‐EHs -- 5.4.3 Pumped Hydro Storage (PHS) -- 5.4.4 Batteries and Electrochemical Systems for Energy Storage -- 5.4.4.1 Merits and Demerits of Battery ESSs -- 5.4.4.2 Challenges in Integrating Battery Energy Storage in MV‐EHs -- 5.4.5 Thermal Energy Storage Technology -- 5.4.6 Magnetic Energy Storage Technology -- 5.4.7 Chemical and Hydrogen Energy Storage -- 5.5 Mathematical Model of MV‐EHs -- 5.5.1 Modeling Approaches -- 5.5.1.1 Mathematical Modeling -- 5.5.1.2 Tools for Simulation -- 5.5.1.3 Hybrid Models -- 5.5.2 Analytical Techniques -- 5.5.2.1 Optimization Algorithms -- 5.5.2.2 Performance Analysis -- 5.5.2.3 Economic and Environmental Analysis -- 5.5.3 Challenges and Opportunities -- 5.5.3.1 Challenges -- 5.5.3.2 Opportunities -- 5.5.4 Policy and Incentive Design -- 5.5.4.1 Future Research Directions -- 5.6 Conclusion -- References -- Chapter 6 Market and Energy Trading Mechanism in MV‐EHs -- 6.1 Introduction to Different Market Clearing Mechanisms in MEH -- 6.2 Concepts of Market Equilibrium Models.6.3 Mechanisms of Energy Trading in MEH -- 6.3.1 Market Structure and Participants -- 6.3.2 Spot and Futures Markets -- 6.3.3 Pricing Mechanisms and Instruments -- 6.3.4 Environmental and Regulatory Considerations -- 6.3.5 Technological Innovations and Market Integration -- 6.4 Types of Market Equilibrium in MEHs -- 6.4.1 Stable Equilibrium -- 6.4.2 Unstable Equilibrium -- 6.4.3 Dynamic Equilibrium -- 6.4.4 Partial Equilibrium -- 6.4.5 General Equilibrium -- 6.4.6 Long‐Run Equilibrium -- 6.4.7 Short‐Run Equilibrium -- 6.5 Graphical Representation of Market Equilibrium -- 6.5.1 Demand and Supply Curves -- 6.5.2 Equilibrium Point -- 6.5.3 Shifts in Curves -- 6.5.4 Surpluses and Shortages -- 6.6 Factors Affecting Market Equilibrium Models -- 6.7 Energy Market Designs -- 6.7.1 Types of Energy Markets -- 6.7.2 Market Clearing Mechanisms -- 6.7.3 Regulatory Framework -- 6.7.4 Incentives for Renewable Energy -- 6.7.5 Demand Response Programs -- 6.7.6 Integration of Distributed Energy Resources -- 6.7.7 Market Interconnections -- 6.7.8 Pricing Mechanisms -- 6.7.9 Environmental Considerations -- 6.7.10 Challenges and Barriers -- 6.7.11 Future Trends in Energy Market Design -- 6.8 Blockchain Technologies -- 6.8.1 Key Components of Blockchain Technology -- 6.8.1.1 Blocks -- 6.8.1.2 Chain -- 6.8.1.3 Nodes -- 6.8.1.4 Consensus Mechanisms -- 6.8.1.5 Cryptographic Hash Functions -- 6.8.1.6 Smart Contracts -- 6.8.1.7 Tokens and Cryptocurrencies -- 6.8.1.8 Wallets -- 6.8.2 Types of Blockchain Technology -- 6.8.2.1 Public Blockchain -- 6.8.2.2 Private Blockchain -- 6.8.2.3 Consortium Blockchain -- 6.8.2.4 Hybrid Blockchain -- 6.8.2.5 Sidechains -- 6.8.2.6 Layer 2 Solutions -- 6.8.3 Features of Blockchain Technology -- 6.8.4 Benefits of Blockchain Technology -- 6.8.5 Challenges and Limitations of Blockchain Technology -- 6.8.6 Applications of Blockchain Technology.6.9 Role of Market Makers in MEHs -- 6.9.1 Providing Liquidity -- 6.9.2 Reducing Bid‐Ask Spreads -- 6.9.3 Price Discovery -- 6.9.4 Stabilizing Markets -- 6.9.5 Reducing Information Asymmetry -- 6.9.6 Risk Management -- 6.9.7 Facilitating Arbitrage -- 6.10 Smart Contracts Between EHs -- 6.10.1 Role of Smart Contracts Between Energy Hubs -- 6.10.1.1 Energy Trading -- 6.10.1.2 Dynamic Pricing -- 6.10.1.3 Automated Energy Distribution -- 6.10.1.4 Microgrid Management -- 6.10.1.5 Energy Storage Management -- 6.10.1.6 Grid Balancing and Stability -- 6.10.1.7 Carbon Credits and Sustainability Incentives -- 6.10.1.8 Grid Services (Demand Response) -- 6.10.1.9 Dispute Resolution -- 6.10.2 Benefits of Smart Contracts in Energy Hubs -- 6.11 Algorithms for Energy Trading Among EHs -- 6.11.1 Market‐Based Algorithms -- 6.11.1.1 Auction Mechanisms -- 6.11.2 Game Theory Approaches -- 6.11.2.1 Nash Equilibrium -- 6.11.2.2 Cooperative Game Theory -- 6.11.3 Optimization Algorithms -- 6.11.3.1 Linear Programming (LP) -- 6.11.3.2 Mixed‐Integer Programming (MIP) -- 6.11.3.3 Dynamic Programming -- 6.11.4 Machine Learning Techniques -- 6.11.4.1 Reinforcement Learning (RL) -- 6.11.4.2 Neural Networks -- 6.11.5 Multiagent Systems -- 6.11.5.1 Distributed Algorithms -- 6.11.5.2 Consensus Algorithms -- 6.11.6 Forecasting Models -- 6.11.6.1 Time Series Analysis -- 6.11.6.2 Weather Forecasting Models -- 6.11.7 Blockchain and Smart Contracts -- 6.11.7.1 Decentralized Trading Platforms -- 6.11.8 Heuristic Methods -- 6.11.8.1 Genetic Algorithms -- 6.11.8.2 Particle Swarm Optimization -- 6.12 Regulatory Framework for MEHs -- 6.12.1 Market Structure and Design -- 6.12.2 Price Formation Mechanisms -- 6.12.3 Transparency and Reporting -- 6.12.4 Market Power and Competition -- 6.12.5 Consumer Protection -- 6.12.6 Environmental and Sustainability Standards.6.12.7 Grid Reliability and Security.Comprehensive reference on multi energy hub (MEH) modeling, management, protection, and trading across energy exchange markets with supporting case studies Energy Management Strategies for Multi-Vectored Energy Hubs to Achieve Low Carbon Societies discusses the complex exchange process across different sources within an evolving set of.Tiwari Shubham1855642Singh Jai Govind1855643Sivaraman Palanisamy1855644Sharmeela Chenniappan1618394Pachauri Rupendra Kumar1761923Padmanaban Sanjeevikumar1751133MiAaPQMiAaPQMiAaPQBOOK9911038526103321Energy Management Strategies for Multi-Vectored Energy Hubs to Achieve Low Carbon Societies4453936UNINA