10832nam 22005053 450 991103852570332120250906060324.01-394-35670-61-394-35669-2(CKB)40877718400041(MiAaPQ)EBC32288987(Au-PeEL)EBL32288987(OCoLC)1535397903(EXLCZ)994087771840004120250906d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierGreen Hydrogen1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2026.1 online resource (576 pages)1-394-35667-6 Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Green Hydrogen: Fundamentals, Properties, Classifications, Advantages and Challenges -- 1.1 Introduction -- 1.2 Physical and Chemical Properties -- 1.3 Technologies Used to Generate Green Hydrogen -- 1.3.1 Water Electrolysis -- 1.3.1.1 Alkaline Water Electrolysis -- 1.3.1.2 Anion Exchange Membrane (AEM) -- 1.3.1.3 Proton Exchange Membrane Water Electrolysis (PEMWE) -- 1.3.1.4 Solid Oxide Water Electrolysis (SOX) -- 1.3.2 Biomass Pyrolysis -- 1.3.3 Biomass Gasification -- 1.3.4 Steam Reforming of Bio-Feedstocks -- 1.3.5 Biological Process -- 1.3.5.1 Bio-Photolysis of Water -- 1.3.5.2 Photo-Fermentation -- 1.3.5.3 Dark Fermentation -- 1.4 Advantages of Green Hydrogen -- 1.5 Challenges of Green Hydrogen -- 1.6 Conclusion -- References -- Chapter 2 Fundamentals of Green Energy and the Significance of Green Hydrogen -- 2.1 Introduction -- 2.2 Types of Green Energy Sources -- 2.2.1 Hydropower -- 2.2.2 Biomass Energy -- 2.2.3 Solar Energy -- 2.2.4 Wind Energy -- 2.2.5 Geothermal Energy -- 2.3 The Role of Green Energy in Mitigating Climate Change -- 2.4 Green Energy and Green Hydrogen -- 2.5 Green Hydrogen as a Sustainable Energy -- 2.5.1 Green Hydrogen Production by Water Electrolysis Technique -- 2.5.2 Environmental Benefits of Green Hydrogen -- 2.6 Technological and Economic Challenges in Green Energy -- 2.7 Policy and Regulatory Challenges in Green Energy -- 2.8 Technological and Economic Challenges in Green Hydrogen -- 2.9 Conclusion -- References -- Chapter 3 Green Hydrogen and Green Energy Fundamentals and Relative Description -- 3.1 Introduction -- 3.2 Hydrogen Production -- 3.2.1 Production of Hydrogen's Green -- 3.2.1.1 Green Hydrogen Generation Methods: Principles and Required Materials -- 3.2.2 Production's Cost -- 3.3 Green Energy Fundamentals.3.3.1 Solar Energy -- 3.3.1.1 Photovoltaic -- 3.3.2 Wind Power Plants -- 3.3.2.1 Advantages -- 3.3.2.2 Disadvantages -- 3.3.3 Other Renewable Energy Sources -- 3.3.3.1 Biomass Power Plants -- 3.3.3.2 Geothermal Power -- 3.3.3.3 Hydro Power Plants -- 3.4 Integration of Green Hydrogen in the Energy Ecosystem -- 3.4.1 Hydrogen as a Renewable Energy Resource -- 3.4.1.1 Production Capacity of Hydrogen and Market -- 3.4.1.2 Applications of Hydrogen -- 3.4.2 Energy Storage -- 3.5 Assessment of the Environment and Economy -- 3.5.1 Environment -- 3.5.2 Economic -- 3.6 Conclusion -- References -- Chapter 4 Green Hydrogen Production: Relative Challenges and Opportunities of Different Method -- 4.1 Introduction -- 4.2 Fundamentals of Green Hydrogen Production -- 4.2.1 Electrolysis Processes -- 4.2.2 Renewable Energy Sources for Electrolysis -- 4.3 Technological Advancements in Green Hydrogen Production -- 4.3.1 Alkaline Electrolyzers -- 4.3.2 PEM Electrolyzers -- 4.3.3 Solid Oxide Electrolysis Cells -- 4.3.4 Comparison of Green Hydrogen Production Technologies -- 4.4 Economic and Policy Considerations -- 4.4.1 Cost Analysis of Green Hydrogen Production -- 4.4.2 Government Incentives and Regulations -- 4.5 Economic and Environmental Benefits of Green Hydrogen -- 4.6 Challenges in Green Hydrogen Production -- 4.6.1 Cost -- 4.6.1.1 Capital Cost -- 4.6.2 Efficiency -- 4.6.3 Scale-Up -- 4.7 Policy and Regulatory Frameworks -- 4.8 Case Studies of Successful Green Hydrogen Projects -- 4.9 Prospects and Market Trends -- 4.10 Conclusion -- References -- Chapter 5 Social and Environmental Challenges of Green Hydrogen -- 5.1 Introduction -- 5.1.1 Green Hydrogen -- 5.1.2 From Hues to Emanation -- Color Labeling of Hydrogen -- 5.1.2.1 Gray Hydrogen -- 5.1.2.2 Turquoise Hydrogen -- 5.1.2.3 Blue Hydrogen -- 5.1.2.4 Purple Hydrogen -- 5.1.2.5 White Hydrogen.5.1.2.6 Green Hydrogen -- 5.2 Literature Survey -- 5.3 Eco-Friendly Techniques for Producing Hydrogen -- 5.3.1 Thermochemical Routes -- 5.3.1.1 Pyrolysis -- 5.3.1.2 Gasification -- 5.3.1.3 Biomass Pyrolysis -- 5.3.1.4 Steam Reforming of Natural Gas -- 5.3.2 Biological Mechanism or Biochemical Transformation -- 5.3.2.1 Bio-Photolysis -- 5.3.2.2 Fermentations -- 5.3.2.3 Water Splitting Techniques -- 5.4 Challenges -- 5.4.1 Social Challenges -- 5.4.1.1 Social Acceptance -- 5.4.1.2 Affordability -- 5.4.1.3 Education and Awareness -- 5.4.1.4 Public Acceptability and Safety -- 5.4.1.5 Law and Policies -- 5.4.1.6 Higher Expenses -- 5.4.2 Environmental Challenges -- 5.4.2.1 Diminution of Carbon Footprint -- 5.4.2.2 Enhancing Air Quality -- 5.4.2.3 Water Conservation -- 5.4.2.4 Waste Supervision -- 5.4.2.5 Sustainable Fuel Production -- 5.5 Conclusions and Future Recommendations -- References -- Chapter 6 Industrial Scale Challenges of Production and Consumption of Green Hydrogen -- 6.1 Introduction -- 6.2 Social Challenges -- 6.2.1 Public Acceptance -- 6.2.2 Job Creation -- 6.3 Environmental Challenges -- 6.3.1 Carbon Emissions -- 6.3.2 Water Usage -- 6.3.3 Land Use -- 6.4 Policy and Regulatory Challenges -- 6.4.1 Transition and Infrastructure -- 6.4.2 Policy Design -- 6.4.3 Regulatory and Legislative Conditions -- 6.5 Social and Environmental Benefits -- 6.5.1 Environmental Benefits -- 6.5.2 Socio-Economic Benefits -- 6.6 Conclusion -- References -- Chapter 7 Seawater as an Alternative Source for Hydrogen Production -- 7.1 Introduction -- 7.2 Production of Hydrogen from Freshwater -- 7.2.1 Electrolysis Process -- 7.2.2 Renewable Energy-Assisted Production of Hydrogen -- 7.2.3 Electrolysis Technologies Adopted -- 7.2.3.1 Alkaline Electrolysis -- 7.2.3.2 Proton Exchange Membrane PEM -- 7.2.3.3 High-Temperature Electrocatalysts (SORC).7.3 Hydrogen Production and Water Scarcity -- 7.4 Hydrogen from Seawater -- 7.4.1 Effects of Chloride Ion -- 7.5 Electrocatalysts for OER -- 7.5.1 Metal Oxides -- 7.5.2 Hydroxide Catalysts -- 7.5.3 Metal Phosphides for OER -- 7.5.4 Metal Nitrides for OER -- 7.5.5 Metal Borides for OER -- 7.5.6 Hybrid Electrocatalysts for OER -- 7.6 Electrocatalysts for HER -- 7.6.1 Noble Metal Alloy Electrocatalysts for HER -- 7.6.2 Carbon-Supported Noble Metals for HER -- 7.6.3 MXene-Based Complexes for HER -- 7.6.4 Metal Phosphides for HER -- 7.6.5 Metal Oxides and Hydroxides for HER -- 7.6.6 Metal Nitrides for HER -- 7.6.7 Hybrid Electrocatalysts for HER -- 7.7 Conclusion -- References -- Chapter 8 Green Hydrogen Investments and Financing: Public and Government Investments -- 8.1 Introduction -- 8.2 Financing Sources for Green Hydrogen Projects -- 8.3 Analysis of Factors Driving Investor Attraction to Green Hydrogen -- 8.4 Current State of Investment in Green Hydrogen -- 8.5 Opportunities and Challenges in Financing Green Hydrogen -- 8.6 Conclusion and Perspectives -- References -- Chapter 9 Future of Green Hydrogen: Opportunities and Challenges -- 9.1 Introduction -- 9.2 Green Hydrogen -- 9.3 Opportunities and Challenges for the Future of Green Hydrogen -- 9.3.1 Opportunities for Industry and the Economy -- 9.3.2 Challenges for the Development of Green Hydrogen -- 9.4 Conclusion and Perspectives -- References -- Chapter 10 Green Hydrogen Production at Industrial Scale: Future Challenges and Opportunities -- 10.1 Introduction -- 10.2 Opportunities and Challenges of Green Hydrogen -- 10.2.1 Transportation and Storage Technologies for Green Hydrogen -- 10.2.2 Compressed Hydrogen Storage -- 10.2.2.1 Physical Storage with Storage Containers -- 10.2.2.2 Geological Storage -- 10.2.3 Liquid Hydrogen -- 10.2.4 Ammonia as Green Hydrogen Carrier.10.2.5 Hydrogen Blending in Pipes for Natural Gas -- 10.3 Conclusion -- References -- Chapter 11 Significant Projects in Production, Storage and Applications of Green Hydrogen Around the World -- 11.1 Introduction to Green Hydrogen Projects -- 11.2 Green Hydrogen Production Projects Around the World -- 11.2.1 Green Hydrogen Production Potential Worldwide -- 11.2.2 Projects Around the World -- 11.2.2.1 Fukushima Hydrogen Energy Research Field (FH2R) -- 11.2.2.2 RESelyser Project -- 11.2.2.3 MEDLYS Project -- 11.2.2.4 ELYGRID Project -- 11.2.2.5 The Hydrogen Office Project -- 11.2.2.6 Wind2hydrogen W2H Project -- 11.2.2.7 Sinopec Zhongyuan Oilfield EOR Project -- 11.2.3 Morocco's Strategy and Its Flagship Green Hydrogen Production Projects -- 11.3 Global Projects for Storing Green Hydrogen -- 11.3.1 Compressed Gas Storage of Hydrogen -- 11.3.1.1 Underground Hydrogen Storage -- 11.3.1.2 Underground Storage in Aquifers -- 11.3.1.3 Underground Storage in Salt Caverns -- 11.3.2 Liquid Hydrogen Storage -- 11.3.2.1 NASA's Kennedy Space Center -- 11.3.2.2 Japan - Australia Partner to Produce Liquid Hydrogen -- 11.3.2.3 Linde Engineering -- 11.3.2.4 BMW Hydrogen -- 11.3.2.5 Hydrogen Storage Using Chemical Hydrides -- 11.3.2.6 Hydrogenous GmbH -- 11.3.2.7 Framatome -- 11.3.2.8 HySA Infrastructure, South Africa -- 11.3.3 Solid State Hydrogen Storage -- 11.3.3.1 GRZ Technologies -- 11.3.3.2 McPhy Energy -- 11.4 Applications of Green Hydrogen in Various Sectors -- 11.4.1 Applications in the Transportation Sector -- 11.4.1.1 Hy2Haul Project -- 11.4.1.2 HyTransit Project -- 11.4.1.3 NamX Project -- 11.4.1.4 Hyship Project -- 11.4.1.5 H2Ports Project -- 11.4.2 Applications in the Industrial Sector -- 11.4.2.1 Ammonia Production Application -- 11.4.2.2 Haldor Topsoe Green Ammonia Project -- 11.4.2.3 HEVO Ammonia Morocco Project -- 11.4.3 Steel Production Applications.11.4.3.1 H2FUTURE Project.Discover the key to a sustainable future with Green Hydrogen , an essential guide for those invested in the innovative potential of green hydrogen production for decarbonization.One of the worldwide objectives for 2050 is to decarbonize the planet.665.81Labjar Najoua1855639Hajjaji Souad El1855640Verma Chandrabhan1837358Dubey Shikha1855641MiAaPQMiAaPQMiAaPQBOOK9911038525703321Green Hydrogen4453932UNINA