09998nam 22004813 450 991102707670332120250906060324.01-394-21682-31-394-21683-11-394-21681-5(CKB)40877790000041(MiAaPQ)EBC32288983(Au-PeEL)EBL32288983(OCoLC)1535404456(EXLCZ)994087779000004120250906d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierTunable Evanescent-Mode Filters Principles, Implementation, and Applications1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2026.1 online resource (276 pages)1-394-21680-7 Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- List of Abbreviations -- About the Companion Website -- Part I Principles -- Chapter 1 Background -- 1.1 Introduction -- 1.1.1 Filters Necessity -- 1.1.2 Alternative Filtering Methods -- 1.2 Filter Anatomy and Representation -- 1.2.1 The Basic Coupling Matrix (M Matrix) -- 1.2.2 Coupling‐Routing Diagrams -- 1.2.3 Additions to the Coupling Matrix for Synthesis of Advanced and Practical Filter Responses -- 1.2.3.1 Positive and Negative Coupling Values -- 1.2.3.2 Finite Resonator Quality Factors -- 1.2.3.3 Resonator Frequency Tuning -- 1.2.3.4 Non‐Resonating Nodes -- 1.2.3.5 Complex Impedance Loads -- 1.3 Tunable Resonators in Filters -- 1.3.1 Planar Tunable Resonators -- 1.3.2 Ferrimagnetic Tunable Resonators -- 1.3.3 Evanescent‐Mode 3‐D Tunable Resonators -- Chapter 2 Evanescent‐Mode Resonators -- 2.1 Physical Structure -- 2.2 Analysis -- 2.2.1 Coaxial Cable Approximation -- 2.2.1.1 Unloaded Quality Factor -- 2.2.2 Tapered Resonator Model -- 2.2.2.1 Frequency Tuning Ratio -- 2.2.3 Tuning Range and Quality Factor Co‐optimization -- 2.3 Coupling Techniques -- 2.3.1 External Coupling -- 2.3.2 Inter‐Resonator Coupling -- 2.4 Coupling Values Polarity -- 2.4.1 External Coupling Polarity -- 2.4.2 Inter‐Resonator Coupling Polarity -- 2.5 Advanced Evanescent‐Mode Structures -- 2.5.1 Dual‐Mode Resonators -- 2.5.2 Fractional Mode Resonators -- 2.6 Filter Examples -- 2.6.1 Chebyshev Bandpass Filter -- 2.6.2 Butterworth Bandstop Filter -- Part II Implementation -- Chapter 3 Printed Circuit Board Technology -- 3.1 Evanescent‐Mode Resonator Structure -- 3.1.1 Practical Considerations -- 3.2 Tunable Membrane -- 3.2.1 Piezoelectric Disk Tuners -- 3.2.2 Contactless Mechanical Actuators -- Chapter 4 Silicon Microfabrication -- 4.1 Generic Structure.4.2 MEMS Tuner Design -- 4.3 Microfabrication Process -- 4.3.1 MEMS Tuner Microfabrication -- 4.3.2 Evanescent‐Mode Resonator Microfabrication -- 4.3.3 Bias Electrode Microfabrication -- 4.3.4 Filter Assembly -- 4.4 Mechanical Model and Power Handling -- Chapter 5 Injection Molding -- 5.1 Manufacturing Technology -- 5.1.1 Device Concept -- 5.1.2 Injection Molding Technology -- 5.1.3 Material Selection -- 5.1.4 Design for Moldability -- 5.2 Resonator and Filter RF Design -- 5.2.1 Resonator -- 5.2.2 Filter -- 5.3 Fabrication and Measurements -- 5.3.1 Resonator -- 5.3.2 Filter Performance Measurements -- 5.3.3 Power Handling -- 5.4 Discussion -- 5.5 Conclusion -- 5.6 How to Choose the Right Manufacturing Technology -- 5.7 How to Choose the Right Actuator for the Filter -- Part III Applications -- Chapter 6 Absorptive Bandstop Filters -- 6.1 Design Principles of Absorptive Filters -- 6.1.1 Analysis of a Two‐Pole Absorptive Bandstop Filter -- 6.1.2 W‐Band Absorptive Bandstop Filter -- 6.1.2.1 Filter Design -- 6.1.2.2 Fabrication and Measurements -- 6.2 Triplet Quasi‐absorptive Topology -- 6.2.1 Quasi‐absorptive Filter Design and Implementation -- 6.2.1.1 Measured Results -- Chapter 7 Bandwidth and Passband Control -- 7.1 Bandwidth Control for Bandpass Filters -- 7.1.1 Filter Design -- 7.1.1.1 Bandwidth Variation -- 7.1.1.2 Quality Factor Impact -- 7.1.1.3 Impedance Matching -- 7.1.1.4 Simulated Results -- 7.1.2 Filter Implementation -- 7.2 BSF Bandwidth Control -- 7.2.1 Constant Bandwidth Coupling Concept -- 7.2.1.1 BW Variation Versus T‐Line Length and Tuning Range -- 7.2.1.2 Phase Variation -- 7.2.2 Constant Bandwidth Filter Design -- 7.2.2.1 External Coupling -- 7.2.2.2 External Coupling Structures: Polarity Design -- 7.2.2.3 Inter‐Resonator Coupling -- 7.2.3 Fabrication and Measurements -- 7.2.3.1 Constant FBW Filter -- 7.2.3.2 Constant ABW Filter.7.2.3.3 Four‐Pole Filter -- Chapter 8 High‐Order and Fractional‐Order Evanescent‐Mode Filters -- 8.1 High‐Order Evanescent‐Mode Filters -- 8.1.1 Independently Tunable Dual‐Mode Evanescent‐Mode Filter -- 8.1.1.1 Resonator Design -- 8.1.1.2 Filter Design -- 8.1.1.3 Experimental Validation -- 8.1.2 High Selectivity Dual‐Mode Filters -- 8.1.2.1 Resonator Design -- 8.1.2.2 Constant Absolute Bandwidth BPF Filter -- 8.1.2.3 Filter A: Implementation and Validation -- 8.1.2.4 Filter B: Implementation and Validation -- 8.1.2.5 Filter C: Implementation and Validation -- 8.1.2.6 Filter D: Implementation and Validation -- 8.1.3 Four‐Wedge Evanescent‐Mode Resonator -- 8.1.3.1 Bandpass Filter Design -- 8.1.3.2 Design Example -- 8.2 Tunable Half‐Mode SIW Filter -- Chapter 9 Advanced Evanescent‐Mode Filter Structures -- 9.1 Bandpass‐to‐bandstop Reconfigurable Filter -- 9.1.1 Bandpass‐to‐bandstop Filter Theory -- 9.1.1.1 Coupling Structure to Switch M01 and M03 Simultaneously -- 9.1.2 Bandpass‐to‐bandstop Reconfigurable Filter Design -- 9.1.3 Measured Results -- 9.2 Field‐programmable Filter Array -- 9.2.1 Positive‐to‐negative Coupling Structure -- 9.2.2 Response Enhancements Enabled By Positive‐to‐negative Inter‐Resonator Coupling -- 9.2.2.1 Zero Net Coupling State Enhancement Using Destructive Interference -- 9.2.2.2 Local Stopband Attenuation Enhancement Technique -- 9.2.3 Resonator Array Design and Fabrication -- 9.2.4 Measured Results -- Chapter 10 Passive Applications -- 10.1 Impedance Tuner -- 10.1.1 Design and Fabrication -- 10.1.2 Measured Results -- 10.2 Single‐ended (SE) and Balanced (BAL) Diplexers -- 10.2.1 Dual‐Mode Diplexing Concept -- 10.2.1.1 Diplexing Architecture -- 10.2.1.2 Resonant Frequency Misalignment -- 10.2.1.3 Inter‐Resonator Coupling -- 10.2.2 SE-SE Diplexer Implementation and Measurements -- 10.2.2.1 External Coupling.10.2.2.2 Measured Results -- 10.2.3 SE-BAL Diplexer Implementation and Measurements -- 10.2.3.1 External Coupling -- 10.2.3.2 Measured Results -- 10.2.4 BAL-BAL Diplexer Implementation and Measurements -- 10.2.4.1 External Coupling -- 10.2.4.2 Measured Results -- 10.3 Tunable Filtering Rat‐race Couplers Based on Half‐ and Full‐mode Evanescent‐mode Resonators -- 10.3.1 Design -- 10.3.2 Full‐mode Rat‐race Coupler -- 10.3.2.1 Experimental Validation -- 10.3.3 Half‐mode Rat‐race Coupler -- 10.3.3.1 Half‐mode Structure -- 10.3.3.2 Experimental Validation -- Chapter 11 Active Applications -- 11.1 Co‐Design of Power Amplifiers and High‐Q Filters -- 11.1.1 Filter Design -- 11.1.2 Transistor Characterization -- 11.1.3 Matching Filter Design -- 11.1.3.1 Fundamental and Harmonic Matchings -- 11.1.4 PA Design -- 11.1.5 Experimental Results -- 11.1.6 Co‐Design of PA and Three‐Pole High‐Q Tunable Filter -- 11.2 Phase‐Locked Loop -- 11.2.1 Frequency Synthesizer Architecture and Phase Noise Model -- 11.2.2 Circuit Design and Optimizations -- 11.2.2.1 Evanescent‐Mode Cavity Resonator -- 11.2.2.2 Voltage‐Controlled Oscillator Design -- 11.2.2.3 Phase‐Locked Loop Design -- 11.2.2.4 Measured Results -- 11.3 Balanced-Balanced Tunable Filtering LNA -- 11.3.1 Cavity Resonator‐LNA Co‐Design -- 11.3.1.1 Evanescent‐Mode Resonators -- 11.3.1.2 LNA -- 11.3.2 Implementation and Measured Results -- Chapter 12 Monitoring and Control -- 12.1 Monitoring and Control of PCB‐based Resonators: Diplexer Example -- 12.1.1 System Architecture -- 12.1.1.1 Diplexer -- 12.1.1.2 Resonators Monitoring and Control -- 12.1.1.3 Spectrum Sensing -- 12.1.2 Control Loop Analysis -- 12.1.3 Design Details -- 12.1.3.1 Diplexer Structure -- 12.1.3.2 Oscillator and Frequency Counter -- 12.1.3.3 Control Unit and Charge Pump -- 12.1.4 Implementation and Measurements -- 12.1.4.1 Implementation.12.1.4.2 Monitoring Performance -- 12.1.4.3 RF Performance -- 12.1.4.4 Spectrum‐aware Measurements -- 12.2 Monitoring and Control of Silicon‐based Filters -- 12.2.1 Monitoring Concepts and Optimizations -- 12.2.1.1 Inductive Proximity Sensing -- 12.2.1.2 Circuit Optimization -- 12.2.1.3 Spiral Inductor -- 12.2.2 Control System Design -- 12.2.3 Testbed Filter Design -- 12.2.4 Implementation and Measurements -- 12.2.4.1 Fabrication -- 12.2.4.2 Sensing Feedback -- 12.2.4.3 Filter Monitoring and Control -- 12.3 Monitoring and Control Applications: Temperature Compensation -- 12.3.1 Temperature Control -- 12.3.1.1 Temperature Compensation System Implementation -- 12.3.1.2 Room Temperature Filter Performance -- 12.3.1.3 Temperature Compensation Performance -- References -- Index -- EULA.Comprehensive resource presenting tunable evanescent-mode filters design principles, implementation technologies, and applications, with hardware demonstrations and illustrations to support concepts Covering all recent advancements in the field, Tunable Evanescent-Mode Filters discusses fundamentals and applications in tunable evanescent-mode.621.38131Peroulis Dimitrios1848712Abu Khater Mohammad1848713MiAaPQMiAaPQMiAaPQBOOK9911027076703321Tunable Evanescent-Mode Filters4436004UNINA