00808nam a2200229 i 450099100435023650753620250214125045.0241113s1971 it er 001 0 ita dBibl. Dip.le Aggr. Scienze Giuridiche - Sez. Studi GiuridiciitaSocioculturale Scsita920.923Di Gè, Michele559819Il libro della sventura :autobiografia di un brigante /Michele Di Gè ; a cura di Vincenzo BuccinoManduria :Lacaita Editore,1971183 p. ;19 cmBriganti e galantuomini ;3Di Gè, MicheleAutobiografieBuccino, VincenzoBriganti e galantuomini ;3991004350236507536Libro della sventura4314624UNISALENTO05641nam 2200721 a 450 991102044550332120200520144314.0978661234623197812823462391282346237978047005850304700585019780470058510047005851X(CKB)1000000000687360(EBL)470690(SSID)ssj0000288741(PQKBManifestationID)11231406(PQKBTitleCode)TC0000288741(PQKBWorkID)10382880(PQKB)10475821(MiAaPQ)EBC470690(OCoLC)264615378(Perlego)2750839(EXLCZ)99100000000068736020080124d2008 uy 0engur|n|---|||||txtccrAnalysis of electromagnetic fields and waves the method of lines /Reinhold Pregla ; with the assistance of Stefan HelfertChichester, England ;Hoboken, NJ J. Wiley & Sons/Research Studies Pressc20081 online resource (523 p.)RSP ;v.21Description based upon print version of record.9780470033609 0470033606 Includes bibliographical references and index.Analysis of Electromagnetic Fields and Waves; Contents; D EQUIVALENT CIRCUITS FOR DISCONTINUITIES; Preface; 1 THE METHOD OF LINES; 1.1 INTRODUCTION; 1.2 MOL: FUNDAMENTALS OF DISCRETISATION; 1.2.1 Qualitative description; 1.2.2 Quantitative description of the discretisation; 1.2.3 Numerical example; 2 BASIC PRINCIPLES OF THE METHOD OF LINES; 2.1 INTRODUCTION; 2.2 BASIC EQUATIONS; 2.2.1 Anisotropicmaterial parameters; 2.2.2 Relations between transversal electric and magnetic fields - generalised transmission line (GTL) equations; 2.2.3 Relation to the analysis with vector potentials2.2.4 GTL equations for 2D structures2.2.5 Solution of the GTL equations; 2.2.6 Numerical examples; 2.3 EIGENMODES IN PLANAR WAVEGUIDE STRUCTURES WITH ANISOTROPIC LAYERS; 2.3.1 Introduction; 2.3.2 Analysis equations for eigenmodes in planar structures; 2.3.3 Examples of system equations; 2.3.4 Impedance/admittance transformation in multilayered structures; 2.3.5 System equation in transformed domain; 2.3.6 System equation in spatial domain; 2.3.7 Matrix partition technique: two examples; 2.3.8 Numerical results; 2.4 ANALYSIS OF PLANAR CIRCUITS2.4.1 Discretisation of the transmission line equations2.4.2 Determination of the field components; 2.5 FIELD AND IMPEDANCE/ADMITTANCE TRANSFORMATION; 2.5.1 Introduction; 2.5.2 Impedance/admittance transformation in multilayered and multisectioned structures; 2.5.3 Impedance/admittance transformation with finite differences; 2.5.4 Stable field transformation through layers and sections; 3 ANALYSIS OF RECTANGULAR WAVEGUIDE CIRCUITS; 3.1 INTRODUCTION; 3.2 CONCATENATIONS OF WAVEGUIDE SECTIONS; 3.2.1 LSM and LSE modes in circular waveguide bends; 3.2.2 LSM and LSE modes in straight waveguides3.2.3 Impedance transformation at waveguide interfaces3.2.4 Numerical results for concatenations; 3.2.5 Numerical results for waveguide filters; 3.3 WAVEGUIDE JUNCTIONS; 3.3.1 E-plane junctions; 3.3.2 H-plane junctions; 3.3.3 Algorithm for generalised scattering parameters; 3.3.4 Special junctions: E-plane 3-port junction; 3.3.5 Matched E-plane bend; 3.3.6 Analysis of waveguide bend discontinuities; 3.3.7 Scattering parameters; 3.3.8 Numerical results; 3.4 ANALYSIS OF 3D WAVEGUIDE JUNCTIONS; 3.4.1 General description; 3.4.2 Basic equations3.4.3 Discretisation scheme for propagation between A and B3.4.4 Discontinuities; 3.4.5 Coupling to other ports; 3.4.6 Impedance/admittance transformation; 3.4.7 Numerical results; 4 ANALYSIS OF WAVEGUIDE STRUCTURES IN CYLINDRICAL COORDINATES; 4.1 INTRODUCTION; 4.2 GENERALISED TRANSMISSION LINE (GTL) EQUATIONS; 4.2.1 Material parameters in a cylindrical coordinate system; 4.2.2 GTL equations for z-direction; 4.2.3 GTL equations for φ-direction; 4.2.4 Analysis of circular (coaxial) waveguides with azimuthally-magnetised ferrites and azimuthallymagnetised solid plasma4.2.5 GTL equations for r-directionThe Method of Lines (MOL) is a versatile approach to obtaining numerical solutions to partial differential equations (PDEs) as they appear in dynamic and static problems. This method, popular in science and engineering, essentially reduces PDEs to a set of ordinary differential equations that can be integrated using standard numerical integration methods. Its significant advantage is that the analysis algorithms follow the physical wave propagation and are therefore efficient. This is because the fields on the discretisation lines are described by generalised transmission line (GTL) equations.RSPElectromagnetic devicesMathematical modelsElectromagnetismMathematicsDifferential equations, PartialNumerical solutionsElectromagnetic devicesMathematical models.ElectromagnetismMathematics.Differential equations, PartialNumerical solutions.530.14/1Pregla Reinhold949547Helfert Stefan949548MiAaPQMiAaPQMiAaPQBOOK9911020445503321Analysis of electromagnetic fields and waves2146247UNINA