11902nam 22006373 450 991102019910332120240521091233.09781119795544111979554097811197955681119795567(MiAaPQ)EBC31251642(Au-PeEL)EBL31251642(CKB)31341696700041(Exl-AI)31251642(OCoLC)1428902567(EXLCZ)993134169670004120240406d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierSignal Processing for Joint Radar Communications1st ed.John Wiley & Sons, Inc2024Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (451 pages)IEEE Press Series9781119795537 1119795532 Cover -- Title Page -- Copyright -- Contents -- List of Editors -- List of Contributors -- Foreword -- Preface -- Acknowledgments -- Part I Fundamental Limits and Background -- Chapter 1 A Signal Processing Outlook Toward Joint Radar‐Communications -- 1.1 Introduction -- 1.2 Policy and Licensing Issues -- 1.3 Legal Challenges -- 1.4 Agency‐Driven Projects -- 1.5 Channel Considerations -- 1.5.1 cmWave vs mmWave -- 1.5.2 Toward THz Band -- 1.5.3 Communications Channel -- 1.5.4 Radar Channel -- 1.5.5 Channel‐Sharing Topologies -- 1.6 JRC Coexistence -- 1.6.1 Communications Performance Criteria -- 1.6.2 Radar Performance Criteria -- 1.6.3 Interference Mitigation -- 1.6.3.1 Receiver Techniques -- 1.6.3.2 Transmitter Techniques -- 1.7 JRC Co‐Design -- 1.7.1 JRC Performance Criteria -- 1.7.2 Radar‐Centric Waveform Design -- 1.7.3 Communications‐Centric Waveform Design -- 1.7.4 Joint Coding -- 1.7.5 Carrier Exploitation -- 1.8 Emerging JRC Applications -- 1.9 Open Problems and Summary -- References -- Chapter 2 Principles of Radar‐Centric Dual‐Function Radar‐Communication Systems -- 2.1 Background -- 2.2 DFRC System Model -- 2.2.1 Resources and Performance Limits -- 2.2.1.1 Radar Performance -- 2.2.1.2 Communications Performance -- 2.2.1.3 DFRC Performance Tradeoff -- 2.2.2 Radar Transmit Signal Model -- 2.2.3 DFRC Transmit Signal Model -- 2.3 DFRC Using Fixed Radar Waveforms -- 2.3.1 DFRC Using Beampattern Modulation -- 2.3.1.1 Beampattern Amplitude Modulation -- 2.3.1.2 Beampattern Phase Modulation -- 2.3.1.3 Beampattern QAM Modulation -- 2.3.2 DFRC Via Waveform Permutation -- 2.3.2.1 Illustrative Example -- 2.4 DFRC Using Modulated Radar Waveforms -- 2.4.1 DFRC Via Intended Modulation on Pulse (IMOP) -- 2.4.2 CPM‐Embedded DFRC -- 2.4.3 DFRC Using FH Waveforms -- 2.5 DFRC Using Index Modulation -- 2.5.1 DFRC by Waveform Selection.2.5.2 DFRC by Antenna Selection -- 2.5.3 FH‐based DFRC Via FH Index Modulation -- 2.5.4 OFDM‐based DFRC Using Index Modulation -- 2.6 Challenges and Future Trends -- References -- Chapter 3 Interference, Clutter, and Jamming Suppression in Joint Radar-Communications Systems - Coordinated and Uncoordinated Designs -- 3.1 Introduction -- 3.1.1 Notations -- 3.2 Joint Design of Coordinated Joint Radar-Communications Systems -- 3.2.1 System Description -- 3.2.1.1 Radar Signal Model -- 3.2.1.2 Communication Signal Model -- 3.2.1.3 Moving Targets -- 3.2.1.4 Static Targets -- 3.2.2 Joint Design Formulations -- 3.2.2.1 Joint Design for Moving Targets -- 3.2.2.2 Joint Design for Static Targets -- 3.3 Interference Suppression in Uncoordinated Joint Radar-Communications Systems -- 3.3.1 System Description -- 3.3.1.1 Radar Signal Model -- 3.3.1.2 Communication Signal Model -- 3.3.1.3 Signal Processing at Radar Receiver -- 3.3.1.4 Radar Signal Component -- 3.3.1.5 Communication Signal Component -- 3.3.2 Optimization and Neural Network Approaches -- 3.3.2.1 Problem Formulation -- 3.3.2.2 Alternating Direction Method of Multipliers -- 3.3.2.3 Deep Unfolded Neural Network -- 3.3.3 Discussion -- 3.3.3.1 Simulations -- 3.3.3.2 Communication‐centric Example -- 3.4 Conclusion -- References -- Chapter 4 Beamforming and Interference Management in Joint Radar-Communications Systems -- 4.1 Introduction -- 4.2 System Overview -- 4.2.1 Radio Channel Properties -- 4.2.2 Cooperation in JRC -- 4.3 JRC Beamforming -- 4.3.1 Radar‐centric Approach -- 4.3.1.1 Power Modulation -- 4.3.1.2 Phase Modulation -- 4.3.2 Joint Transmit Beamforming -- 4.3.3 Receiver Processing -- 4.4 Multicarrier Waveforms for JRC -- 4.4.1 OFDM Design Example -- 4.4.2 MC‐DS‐CDMA Design Example -- 4.5 Precoder Design for Multiple JRC Users -- 4.5.1 Cooperative Active/Passive Sensing for Multiple Users.4.5.1.1 Communication Signal as Useful Energy -- 4.5.1.2 Ignoring Communication Signal -- 4.5.1.3 Communication Signal as Interference -- 4.5.2 Interference Management for Multiple JRC Users -- 4.5.2.1 Null Space-based Precoder Design -- 4.5.2.2 Precoder-Decoder Co‐design -- 4.5.2.3 Awareness, Cognition, and Cooperation -- 4.6 Summary -- List of Symbols -- References -- Chapter 5 Information Theoretic Aspects of Joint Sensing and Communications -- 5.1 Introduction -- 5.2 Information Theoretic Model -- 5.3 Fundamental Trade‐off Between Sensing and Communications -- 5.3.1 Capacity-Distortion-Cost Trade‐off -- 5.3.2 Numerical Method for Optimization -- 5.3.3 Numerical Examples -- 5.3.3.1 Binary Channels with Multiplicative Bernoulli State -- 5.3.3.2 Rayleigh Fading Channels -- 5.4 Application to Joint Radar and Communications -- 5.4.1 System Model -- 5.4.2 Maximum Likelihood Estimator -- 5.4.3 Cramér-Rao Lower Bound -- 5.4.4 Simulation Results -- 5.5 Concluding Remarks -- Acknowledgment -- References -- Part II Physical‐Layer Signal Processing -- Chapter 6 Radar‐aided Millimeter Wave Communication -- 6.1 Motivation for Radar‐aided Communication -- 6.1.1 Sensing on the Wireless Infrastructure -- 6.1.2 Sensing at the User Equipment (UE) -- 6.2 Radar‐aided Communication Exploiting Position Information -- 6.2.1 MmWave Beamtraining Using a BS Mounted Radar -- 6.3 Radar‐aided Communication Exploiting Covariance Information -- 6.3.1 Measuring Radar and Communication Congruence -- 6.3.2 Radar Covariance Estimation with a Passive Radar at the BS -- 6.3.3 Learning Mismatches Between Radar and Communication Channels -- 6.3.3.1 Learning the Covariance Vector -- 6.3.3.2 Learning the Dominant Eigenvectors -- 6.3.3.3 Learning the APS -- 6.4 Challenges and Opportunities -- References.Chapter 7 Design of Constant‐Envelope Radar Signals Under Multiple Spectral Constraints -- 7.1 Introduction -- 7.1.1 Notations -- 7.2 System Model and Problem Formulation -- 7.2.1 System Model -- 7.2.2 Code Design Optimization Problem -- 7.3 Radar Waveform Design Procedure -- 7.3.1 Code Phase Optimization -- 7.3.2 Solution Technique for ¯pd,x(n) -- 7.3.2.1 Code Amplitude Optimization -- 7.3.2.2 Code Phase Optimization -- 7.3.3 Heuristic Methods for Algorithm Initialization -- 7.3.3.1 Relaxation and Randomization‐based Approach -- 7.3.3.2 Free‐Band Capitalization Code Design -- 7.4 Performance Analysis -- 7.5 Conclusion -- 7.A Derivation of ΨM -- 7.A Derivation of Equation (7.19) -- 7.A Characterization of the Objective in pxd(n) -- 7.A Derivation of the Feasible Set of pxd(n) -- 7.A Proof of Proposition 7.1 -- 7.A Proof of Corollary 7.1 -- References -- Chapter 8 Spectrum Sharing Between MIMO Radar and MIMO Communication Systems -- 8.1 Introduction -- 8.1.1 Literature Review -- 8.1.1.1 Noncooperative Spectrum Sharing Methods -- 8.1.1.2 Cooperative Spectrum Sharing Methods -- 8.2 MIMO Radars Using Sparse Sensing -- 8.2.1 MIMO‐MC Radar Using Random Unitary Matrix -- 8.3 Coexistence System Model -- 8.3.1 Transmitted Signals -- 8.3.2 Fading -- 8.3.3 Channel State Information (CSI) -- 8.3.4 The Radar Mode of Operation -- 8.4 Cooperative Spectrum Sharing -- 8.4.1 Interference at the Communication Receiver -- 8.4.2 Interference at the MIMO‐MC Radar -- 8.4.3 Formulating the Design Problem at the Control Center -- 8.4.4 Solution to the Spectrum Sharing Problem Using Alternating Optimization -- 8.4.4.1 The Alternating Iteration w.r.t. {Rxl} -- 8.4.4.2 The Alternating Iteration w.r.t. Ω -- 8.4.4.3 The Alternating Iteration w.r.t. Φ -- 8.4.5 Insight into the Feasibility and Solutions of the Spectrum Sharing Problem -- 8.4.5.1 Feasibility.8.4.5.2 The Rank of the Solutions Φ -- 8.4.6 Constant‐rate Communication Transmission for Spectrum Sharing -- 8.4.7 Traditional MIMO Radars for Spectrum Sharing -- 8.5 Numerical Results -- 8.5.1 The Radar Transmit Beampattern and the MUSIC Spectrum -- 8.5.2 Comparison of Different Levels of Cooperation -- 8.5.3 Comparison Between Adaptive and Constant‐rate Communication Transmissions -- 8.5.4 Comparison Between MIMO‐MC Radars and Traditional MIMO Radars -- 8.6 Conclusions -- References -- Chapter 9 Performance and Design for Cooperative MIMO Radar and MIMO Communications -- 9.1 Introduction and Literature Review -- 9.1.1 Previous DFRC Approaches -- 9.1.1.1 Integrated Waveform Design -- 9.1.1.2 Beamforming -- 9.1.2 Previous CERC Approaches -- 9.1.2.1 Resource Scheduling -- 9.1.2.2 Transmitter Design -- 9.1.2.3 Receiver Design -- 9.1.2.4 Transmitter and Receiver Co‐design -- 9.1.3 Cooperative CERC Systems -- 9.1.4 Overview of Remainder of the Chapter -- 9.2 Cooperative CERC System Model -- 9.2.1 Received Radar Signals -- 9.2.2 Received Communications Signals -- 9.3 Hybrid Active-Passive Cooperative CERC MIMO Radar System -- 9.3.1 Target Detection -- 9.3.2 Target Localization -- 9.3.3 Comparison with Noncooperative Case -- 9.3.3.1 Gain for Radar Target Detection -- 9.3.3.2 Gain for Radar Parameter Estimation -- 9.4 Radar‐aided MIMO Communications in Cooperative CERC System -- 9.4.1 Mutual Information -- 9.4.2 Comparison with Noncooperative Cases -- 9.5 Cooperative Radar and Communications System Co‐design -- 9.5.1 Power Allocation Based on PD and MI -- 9.5.2 Power Allocation Based on CRB and MI -- 9.6 Conclusions -- References -- Part III Networking and Hardware Implementations -- Chapter 10 Frequency‐Hopping MIMO Radar‐based Data Communications -- 10.1 Introduction -- 10.2 System Diagram and Signal Model -- 10.2.1 Signal Model of FH‐MIMO Radar.10.2.2 Information Embedding at Radar.This book, 'Signal Processing for Joint Radar Processing for Joint Radar,' edited by Kumar Vijay Mishra, M. R. Bhavani Shankar, Björn Ottersten, and A. Lee Swindlehurst, delves into the advanced signal processing techniques for joint radar and communication systems. It explores the fundamental limits, interference management, beamforming, and information-theoretic aspects crucial for enhancing radar systems' efficiency. The book is structured into sections covering theoretical foundations, signal processing methodologies, and networking hardware considerations. It addresses challenges such as spectrum sharing, interference suppression, and resource allocation in joint radar systems, making it a valuable resource for engineers and researchers in the field of radar and communication technology.Generated by AI.IEEE Press SeriesRadarGenerated by AISignal processingGenerated by AIRadarSignal processing621.3822Mishra Kumar Vijay1751164Shankar M. R. Bhavani1840798Ottersten Björn1840799Swindlehurst A. Lee1840800MiAaPQMiAaPQMiAaPQBOOK9911020199103321Signal Processing for Joint Radar Communications4420365UNINA