01498nam0 22002891i 450 SUN001847120160401105319.60120040628d1995 |0itac50 baitaIT|||| |||||Selvicoltura specialeGiovanni BernettiTorinoUTET[1995]XIX, 415 p.ill.26 cm.TorinoSUNL000001634.95Scienze forestali. Silvicoltura22581.7Ecologia vegetale, piante caratteristiche di specifici ambienti22Bernetti, GiovanniSUNV01448074191UTETSUNV000072650ITSOL20181109RICASUN0018471UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE17 PREST Eb15 17 FMF3589 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHE17 CONS Ja5 17 FSA291 UFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHEIT-CE0101FMF3589PREST Eb15paUFFICIO DI BIBLIOTECA DEL DIPARTIMENTO DI SCIENZE E TECNOLOGIE AMBIENTALI BIOLOGICHE E FARMACEUTICHEIT-CE0101FSA291CONS Ja5caSelvicoltura speciale408343UNICAMPANIA00934nam--2200337---450-99000171861020331620050620162428.0000171861USA01000171861(ALEPH)000171861USA0100017186120040601d1957----km-y0itay0103----baengNL||||||||001yyPhysical science and phisical realityLouis O. KattsoffThe HagueNijhoff1957VIII, 311 p.25 cm20012001001-------2001KATTSOFF,Louis O.13129ITsalbcISBD990001718610203316II.6. 649(IV C 507)L.M.IV CBKUMASIAV31020040601USA011320COPAT29020050620USA011624Physical science and phisical reality947404UNISA05584nam 22006734a 450 991102015790332120200520144314.09786610649938978128064993612806499339780470855461047085546097804708554540470855452(CKB)1000000000356097(EBL)274326(SSID)ssj0000120117(PQKBManifestationID)11146443(PQKBTitleCode)TC0000120117(PQKBWorkID)10080909(PQKB)11446384(MiAaPQ)EBC274326(OCoLC)180273386(Perlego)2753865(EXLCZ)99100000000035609720060215d2006 uy 0engur|n|---|||||txtccrCharge-based MOS transistor modeling the EKV model for low-power and RF IC design /Christian C. Enz, Eric A. VittozChichester, England ;Hoboken, NJ John Wileyc20061 online resource (329 p.)Description based upon print version of record.9780470855416 047085541X Includes bibliographical references (p. [291]-298) and index.Charge-based MOS Transistor Modeling; Contents; Foreword; Preface; List of Symbols; 1 Introduction; 1.1 The Importance of Device Modeling for IC Design; 1.2 A Short History of the EKV MOS Transistor Model; 1.3 The Book Structure; Part I The Basic Long-Channel Intrinsic Charge-Based Model; 2 Definitions; 2.1 The N-channel Transistor Structure; 2.2 Definition of Charges, Current, Potential, and Electric Fields; 2.3 Transistor Symbol and P-Channel Transistor; 3 The Basic Charge Model; 3.1 Poisson's Equation and Gradual Channel Approximation; 3.2 Surface Potential as a Function of Gate Voltage3.3 Gate Capacitance3.4 Charge Sheet Approximation; 3.5 Density of Mobile Inverted Charge; 3.5.1 Mobile Charge as a Function of Gate Voltage and Surface Potential; 3.5.2 Mobile Charge as a Function of Channel Voltage and Surface Potential; 3.6 Charge-Potential Linearization; 3.6.1 Linearization of Qi (s); 3.6.2 Linearized Bulk Depletion Charge Qb; 3.6.3 Strong Inversion Approximation; 3.6.4 Evaluation of the Slope Factor; 3.6.5 Compact Model Parameters; 4 Static Drain Current; 4.1 Drain Current Expression; 4.2 Forward and Reverse Current Components; 4.3 Modes of Operation4.4 Model of Drain Current Based on Charge Linearization4.4.1 Expression Valid for All Levels of Inversion; 4.4.2 Compact Model Parameters; 4.4.3 Inversion Coefficient; 4.4.4 Approximation of the Drain Current in Strong Inversion; 4.4.5 Approximation of the Drain Current in Weak Inversion; 4.4.6 Alternative Continuous Models; 4.5 Fundamental Property: Validity and Application; 4.5.1 Generalization of Drain Current Expression; 4.5.2 Domain of Validity; 4.5.3 Causes of Degradation; 4.5.4 Concept of Pseudo-Resistor; 4.6 Channel Length Modulation; 4.6.1 Effective Channel Length4.6.2 Weak Inversion4.6.3 Strong Inversion; 4.6.4 Geometrical Effects; 5 The Small-Signal Model; 5.1 The Static Small-Signal Model; 5.1.1 Transconductances; 5.1.2 Residual Output Conductance in Saturation; 5.1.3 Equivalent Circuit; 5.1.4 The Normalized Transconductance to Drain Current Ratio; 5.2 A General NQS Small-Signal Model; 5.3 The QS Dynamic Small-Signal Model; 5.3.1 Intrinsic Capacitances; 5.3.2 Transcapacitances; 5.3.3 Complete QS Circuit; 5.3.4 Domains of Validity of the Different Models; 6 The Noise Model; 6.1 Noise Calculation Methods; 6.1.1 General Expression6.1.2 Long-Channel Simplification6.2 Low-Frequency Channel Thermal Noise; 6.2.1 Drain Current Thermal Noise PSD; 6.2.2 Thermal Noise Excess Factor Definitions; 6.2.3 Circuit Examples; 6.3 Flicker Noise; 6.3.1 Carrier Number Fluctuations (Mc Worther Model); 6.3.2 Mobility Fluctuations (Hooge Model); 6.3.3 Additional Contributions Due to the Source and Drain Access Resistances; 6.3.4 Total 1/f Noise at the Drain; 6.3.5 Scaling Properties; 6.4 Appendices; Appendix: The Nyquist and Bode Theorems; Appendix: General Noise Expression; 7 Temperature Effects and Matching; 7.1 Introduction7.2 Temperature EffectsModern, large-scale analog integrated circuits (ICs) are essentially composed of metal-oxide semiconductor (MOS) transistors and their interconnections. As technology scales down to deep sub-micron dimensions and supply voltage decreases to reduce power consumption, these complex analog circuits are even more dependent on the exact behavior of each transistor. High-performance analog circuit design requires a very detailed model of the transistor, describing accurately its static and dynamic behaviors, its noise and matching limitations and its temperature variations. The charge-based EKV (EnzMetal oxide semiconductorsMathematical modelsMetal oxide semiconductor field-effect transistorsMathematical modelsMetal oxide semiconductorsMathematical models.Metal oxide semiconductor field-effect transistorsMathematical models.621.3815/284Enz Christian1339617Vittoz Eric A.1938-725311MiAaPQMiAaPQMiAaPQBOOK9911020157903321Charge-based MOS transistor modeling4422867UNINA