10439nam 22006013 450 991102004330332120240528080229.0978139418895613941889519781394188970139418897897813941889871394188986(MiAaPQ)EBC31354785(Au-PeEL)EBL31354785(CKB)32154705200041(Exl-AI)31354785(Perlego)4430180(OCoLC)1436833446(EXLCZ)993215470520004120240528d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierAdvanced Nanoscale MOSFET Architectures Current Trends and Future Perspectives1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (339 pages)9781394188949 1394188943 Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Chapter 1 Emerging MOSFET Technologies -- 1.1 Introduction: Transistor Action -- 1.2 MOSFET Scaling -- 1.3 Challenges in Scaling the MOSFET -- 1.4 Emerging MOSFET Architectures -- 1.4.1 Tunnel FET -- 1.4.2 Nanowire FET -- 1.4.3 Nanosheet FET -- 1.4.4 Negative Capacitance FET -- 1.4.5 Graphene FET -- 1.4.6 III-V Material‐based MOSFETS -- 1.4.7 HEMT -- 1.4.8 Strain Engineered MOSFETs -- 1.5 Organization of this Book -- References -- Chapter 2 MOSFET: Device Physics and Operation -- 2.1 Introduction to MOSFET -- 2.2 Advantages of MOSFET -- 2.3 Applications of MOSFETs -- 2.4 Types of MOSFETs -- 2.4.1 P‐Channel and N‐Channel MOSFET -- 2.4.2 MOSFET Working Operation -- 2.5 Band Diagram of MOSFET -- 2.5.1 Accumulation Layer -- 2.5.2 Depletion Layer -- 2.5.3 Inversion Layer -- 2.6 MOSFET Regions of Operation -- 2.6.1 N‐Channel Depletion MOSFET -- 2.6.2 P‐Channel depletion MOSFET -- 2.6.3 Operating Regions of P‐Channel Depletion MOSFET -- 2.6.4 Enhancement MOSFET -- 2.6.5 N‐Channel Enhancement MOSFET -- 2.6.6 P‐Channel Enhancement MOSFET -- 2.7 Scaling of MOSFET -- 2.7.1 Types of Scaling -- 2.8 Short‐channel Effects -- 2.8.1 Drain‐induced Barrier Lowering -- 2.8.2 Gate‐induced Drain Leakage -- 2.9 Body Bias Effect -- 2.9.1 Salient Feature of Body Bias -- 2.9.2 Significance of Body Bias -- 2.9.3 Body Bias Verification -- 2.10 Advancement of MOSFET Structures -- References -- Chapter 3 High‐κ Dielectrics in Next Generation VLSI/Mixed Signal Circuits -- 3.1 Introduction to Gate Dielectrics -- 3.2 High‐κ Dielectrics in Metal-Oxide-Semiconductor Capacitors -- 3.3 High‐κ Dielectrics in Metal Insulator Metal (MIM) Capacitors -- 3.3.1 High‐κ Dielectrics for Mixed Signal Circuits.3.3.2 High‐κ Dielectrics as Stacks for Resistive Random Access Memories -- 3.4 MOSFETs Scaling and the Need of High‐κ -- 3.5 High‐κ Dielectrics in Next Generation Transistors -- 3.5.1 Planar-Nano Scale Field Effect Transistor -- 3.5.2 Silicon on Insulator -- 3.5.3 FIN Field Effect Transistor -- 3.5.4 Tunnel Field Effect Transistor -- 3.5.5 Negative Capacitance Field Effect Transistor -- References -- Chapter 4 Consequential Effects of Trap Charges on Dielectric Defects for MU‐G FET -- 4.1 Introduction -- 4.2 TID Effects Overview -- 4.3 Application Area of Device for TID Effect Analysis -- 4.4 Near the Earth: Trapped Radiation -- 4.5 Ionizing Radiation Effect in Silicon Dioxide (SiO2) -- 4.6 TID Effects in CMOS -- 4.7 TID Effects in Bipolar Devices -- 4.8 Understanding and Modeling a‐SiO2 Physics -- 4.9 Hydrogen (H2) Reaction with Trapped Charges at Insulator -- 4.10 Pre‐Existing Trap Density and their Respective Location -- 4.11 Use of High‐K Dielectric in MU‐G FET -- 4.12 Properties of Trap in the High‐K with Interfacial Layer -- 4.13 Trap Extraction Techniques -- 4.13.1 Capacitance Inversion Technique (CIT) -- 4.13.2 Charge Pumping Technique (CPT) -- 4.14 Conclusion -- References -- Chapter 5 Strain Engineering for Highly Scaled MOSFETs -- 5.1 Introduction -- 5.2 Simulation Approach -- 5.2.1 Strain Mapping -- 5.2.2 Mechanical Strain Modeling -- 5.2.3 Piezoresistivity Effect -- 5.2.4 Strain Induced Carrier Mobility -- 5.3 Case Study -- 5.3.1 Stress/Strain Engineering in Bulk‐Si FinFETs -- 5.3.1.1 Performance Analysis of Bulk‐Si FinFET -- 5.3.1.2 Effects of Fin Geometry Variations -- 5.3.2 Nanosheet -- 5.3.2.1 Impact of Mechanical Stress -- 5.3.2.2 Strained Engineering with Embedded Source/Drain Stressor -- 5.3.3 Extremely Thin SOI MOSFETs -- 5.4 Conclusions -- References.Chapter 6 TCAD Analysis of Linearity Performance on Modified Ferroelectric Layer in FET Device with Spacer -- 6.1 Introduction -- 6.2 Simulation and Structure of Device -- 6.3 Results and Analysis -- 6.4 Conclusion -- Acknowledgment -- References -- Chapter 7 Electrically Doped Nano Devices: A First Principle Paradigm -- 7.1 Introduction -- 7.2 Electrical Doping -- 7.3 First Principle -- 7.3.1 DFT -- 7.3.2 NEGF -- 7.4 Molecular Simulation -- 7.5 Conclusion -- References -- Chapter 8 Tunnel FET: Principles and Operations -- 8.1 Introduction to Quantum Mechanics and Principles of Tunneling -- 8.2 Tunnel Field‐Effect Transistor -- 8.3 Challenges of Tunnel Field‐Effect Transistor -- 8.3.1 Low On‐state Current -- 8.3.2 Drain‐Induced Barrier Thinning Effect -- 8.3.3 Ambipolarity -- 8.3.4 Trap‐Assisted Tunneling -- 8.4 Techniques for Improving Electrical Performance of Tunnel Field‐Effect Transistor -- 8.4.1 Doping Engineering -- 8.4.2 Material Engineering -- 8.4.3 Geometry and Structure Engineering -- 8.5 Conclusion -- References -- Chapter 9 GaN Devices for Optoelectronics Applications -- 9.1 Introduction -- 9.2 Properties of GaN‐Based Material -- 9.2.1 Bandgap of GaN -- 9.2.2 Critical Electric Field of GaN -- 9.2.3 ON‐resistance of GaN -- 9.2.4 Two‐dimensional Electron Gas Formation at AlGaN/GaN Interface -- 9.3 GaN LEDs -- 9.3.1 Different Colors LEDs -- 9.3.2 μ‐LEDs -- 9.3.3 Micro‐LEDs with GaN‐based N‐doped Quantum Barriers -- 9.3.4 Blue Light Emission in GaN‐based LEDs -- 9.3.5 Characteristics -- 9.4 GaN Lasers -- 9.4.1 Blue Laser Diodes -- 9.5 GaN HEMTs for Optoelectronics -- 9.6 GaN Sensors -- References -- Chapter 10 First Principles Theoretical Design on Graphene‐Based Field‐Effect Transistors -- 10.1 Introduction -- 10.2 Graphene -- 10.2.1 Electronic Structure -- 10.2.2 Scanning Tunneling Microscopy -- 10.2.3 Electronic Transport.10.3 Graphene/h‐BN Hybrid Structure -- 10.3.1 Atomic Structure -- 10.3.2 Structure and Energetics -- 10.3.3 Electronic Structure -- 10.3.4 Scanning Tunneling Microscopy -- 10.4 Conclusions -- Acknowledgments -- References -- Chapter 11 Performance Analysis of Nanosheet Transistors for Analog ICs -- 11.1 Introduction -- 11.2 Evolution of Nanosheet Transistors -- 11.2.1 Short‐Channel Effects and Their Mitigation -- 11.2.2 The FinFET Technology -- 11.2.3 Advent of Nanosheet Transistors -- 11.3 TCAD Modeling of Nanosheet Transistor -- 11.4 Transistor's Analog Performance Parameters -- 11.4.1 Transconductance -- 11.4.2 Output Conductance -- 11.4.3 Intrinsic Gain -- 11.4.4 Transconductance Efficiency -- 11.4.5 Discharge Time -- 11.4.6 Small Signal Capacitances and AC Model -- 11.4.7 Transit Frequency -- 11.5 Challenges and Perspectives of Modern Analog Design -- References -- Chapter 12 Low‐Power Analog Amplifier Design using MOS Transistor in the Weak Inversion Mode -- 12.1 Introduction -- 12.2 Review of the Theory of Weak Inversion Mode Operation of MOS Transistor -- 12.2.1 Drain Current Model in the Weak Inversion Mode -- 12.2.2 Concept of Inversion Coefficient -- 12.2.3 Parameter Extraction -- 12.2.3.1 Technology Current Constant Io -- 12.2.3.2 Sub‐threshold Swing Factor η -- 12.2.4 Small Signal Parameters in Weak Inversion Region -- 12.3 Design Steps for Transistor Sizing Using the IC -- 12.4 Design Examples -- 12.4.1 Design of a Common Source Amplifier -- 12.4.2 Single‐Ended Operational Transconductance Amplifier -- 12.4.2.1 Implementation and Simulation Result -- 12.5 Summary -- References -- Chapter 13 Ultra‐conductive Junctionless Tunnel Field‐effect Transistor‐based Biosensor with Negative Capacitance -- 13.1 Introduction -- 13.2 Importance of SS and ION/IOFF in Biosensing -- 13.3 Importance of Dopingless Source and Drain in High Conductivity.13.4 Relation of Negative Capacitance with Non‐hysteresis and Effect on Biosensing -- 13.5 Variation of Source Material on Biosensing -- 13.6 Importance of Dual Gate and Ferroelectricity on Biosensing -- 13.7 Effect of Dual Material Gate on Biosensing -- References -- Chapter 14 Conclusion and Future Perspectives -- 14.1 Applications -- 14.1.1 Opportunities in Big Data -- 14.1.2 Fight Against Environment Change -- 14.1.3 Creation of Graphene -- 14.1.4 Nano Systems -- 14.1.5 Nanosensors -- 14.2 Some Recent Developments -- 14.3 Future Perspectives -- 14.4 Conclusion -- References -- Index -- EULA.This book provides an in-depth analysis of advanced nanoscale MOSFET architectures, focusing on current trends and future perspectives in the field. Edited by experts Kalyan Biswas and Angsuman Sarkar, the book covers a range of topics including MOSFET scaling, device physics, and the operation of novel transistor technologies such as TunnelFET, NanowireFET, and GrapheneFET. It also explores high-k dielectrics, the impact of trap charges on dielectric defects, and the performance of nanosheet transistors. Intended for researchers, engineers, and professionals, the book offers insights into the challenges and opportunities presented by nanoscale devices in modern technology.Generated by AI.Metal oxide semiconductor field-effect transistorsGenerated by AINanotechnologyGenerated by AIMetal oxide semiconductor field-effect transistorsNanotechnology621.3815/284Biswas Kalyan1840616Sarkar Angsuman1171696MiAaPQMiAaPQMiAaPQBOOK9911020043303321Advanced Nanoscale MOSFET Architectures4420206UNINA