11847nam 22006253 450 991102003930332120240203060212.097835278039343527803939978352780390335278039049783527712779352771277197835278039103527803912(CKB)4330000000010746(MiAaPQ)EBC31097933(Au-PeEL)EBL31097933(Exl-AI)31097933(Perlego)4334063(EXLCZ)99433000000001074620240203d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierLight Sheet Fluorescence Microscopy1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (419 pages)9783527341351 3527341358 Cover -- Title Page -- Copyright -- Contents -- Foreword by Ernst H. K. Stelzer -- Preface -- Chapter 1 Let There be Light Sheet -- 1.1 Historical Context of Light Sheet Microscopy - Ultramicroscopy -- 1.2 Light Sheet Imaging Across the Twentieth Century -- 1.3 And here Comes the Flood -- 1.4 The Building of a Community -- References -- Chapter 2 Illumination in Light Sheet Fluorescence Microscopy -- 2.1 Introduction -- 2.2 Axial Resolution and Optical Sectioning in Light Sheet Microscopy -- 2.2.1 The Point Spread Function in Fluorescence Microscopy -- 2.2.2 The Point Spread Function in Light Sheet Fluorescence Microscopy -- 2.3 Light Sheet Dimensions -- 2.3.1 Gaussian Optics Description of Beam Focusing (x,z Axes) -- 2.3.2 Methods of Light Sheet Production (y Axis) -- 2.4 Practical Light Sheet Generation -- 2.4.1 Static and Pivoted Light Sheets -- 2.4.2 Scanned Light Sheets -- 2.5 Degradation of the Light Sheet in Tissue -- 2.5.1 Absorption of the Light Sheet in Tissue -- 2.5.2 Refraction of the Light Sheet in Tissue -- 2.5.3 Scattering of the Light Sheet in Tissue -- 2.6 Challenges and Benefits of Light Sheet Modes -- 2.6.1 Parallelization of the Light Sheet -- 2.6.2 Image Artifacts Arising from Light Sheet Illumination -- 2.6.3 Homogeneity of Light Sheet Illumination -- 2.6.4 Robustness and Simplicity of Light Sheet Generation -- 2.6.5 The Merits of Static, Pivoted, and Scanned Light Sheets -- 2.7 Multiphoton Excitation -- 2.7.1 Two‐Photon Light Sheets -- 2.7.2 Two‐Photon Light Sheet Dimensions -- 2.7.3 Comparison with One‐Photon Light Sheet Microscopy -- 2.7.4 Comparison with Laser‐Scanning Multiphoton Microscopy -- 2.8 Multi‐View Illumination -- 2.9 High‐Resolution Imaging -- 2.9.1 Geometric Limitations for High‐Resolution Imaging -- 2.9.1.1 Oblique Light Sheets -- 2.9.1.2 Reflected Light Sheets.2.9.2 Diffractive Limitations for High‐Resolution Imaging -- 2.9.2.1 Bessel Beams -- 2.9.2.2 Axially Swept Beams -- 2.9.2.3 Photophysical Approaches -- 2.10 Conclusions -- References -- Chapter 3 A Small Guide on How to Mount a Sample in a Light‐Sheet Microscope -- 3.1 Introduction -- 3.2 A Few Basic Rules -- 3.2.1 Rule 0 - Don't Panic! Become Enthusiastic! -- 3.2.2 Rule 1 - Keep it Clean -- 3.2.3 Rule 2 - The Light Comes Sideways -- 3.2.4 Rule 3 - The Theory does not Apply to your Sample -- 3.2.5 Rule 4 - Sample Geometry Matters -- 3.2.6 Rule 5 - Know Your System Well -- 3.2.7 Rule 6 - How Does Your Sample Move? -- 3.2.8 Rule 7 - What Was Lost? -- 3.2.9 Rule 8 - Consistency is Key -- 3.3 The Light‐Matter Conundrum -- 3.4 Hydrogels -- 3.4.1 Preparation -- 3.5 Glues -- 3.6 Sample Holders -- 3.7 Clearing -- 3.8 Cleaning, Labelling, and Storing Samples -- 3.9 An Example: Time‐lapse Live Imaging of Three‐dimensional Cultures -- 3.9.1 Environmental Control: Temperature, pH, Oxygenation -- 3.9.2 Perfusion‐based Environmental Control -- 3.9.3 Sample Holders for the Live Imaging of Three‐dimensional Cell Cultures -- 3.9.3.1 Agarose Beakers -- 3.9.3.2 FEP‐foil Sample Holders -- 3.9.4 References -- 3.10 A Bit of Literature -- 3.10.1 Reference Guides -- 3.10.2 Your Favorite Models -- 3.10.3 Others -- 3.10.4 Protocol Videos -- Bibliography -- Chapter 4 Detection in a Light Sheet Microscope -- 4.1 Introduction -- 4.2 Image Formation in LSFM -- 4.2.1 WFM Scheme -- 4.2.2 LSFM Scheme -- 4.2.3 Practical Design Examples of an LSFM -- 4.3 Advanced Detection Schemes -- 4.3.1 Spectrally Resolved -- 4.3.2 Contrast Enhancement (Confocal Line) -- 4.3.3 Aberration Correction (Adaptive Optics) -- 4.3.4 Fast Volumetric Imaging -- 4.3.4.1 Inverted SPIM -- 4.3.4.2 Remote Focusing Using Tunable Lens -- 4.3.4.3 OPM‐SCAPE -- 4.3.4.4 Wavefront Coding -- 4.4 Conclusions -- References.Chapter 5 Light Sheet Microscope Configurations -- 5.1 LSFM Architectures -- 5.1.1 Multiple Objective Lens Configurations -- 5.1.2 Single Objective Lens Configurations -- 5.1.3 Opposing Objective Lens Configurations -- 5.2 Recording Three‐Dimensional Image Data -- 5.2.1 Moving the Sample -- 5.2.2 Moving Detection and Illumination -- 5.3 Configurations that Expand on Specific Capabilities -- 5.3.1 First Light Sheet: Increasing Sample Viability -- 5.3.2 Imaging Easier: Increasing Flexibility -- 5.3.3 Imaging Deeper: Increasing Penetration Depth -- 5.3.4 Imaging Wider: Increasing the Effective Field of View -- 5.3.5 Imaging All Around: Increasing the Isotropy -- 5.3.6 Imaging Brighter: Increasing Contrast -- 5.3.7 Imaging Faster in 3D: Increasing Volumetric Temporal Resolution -- 5.3.8 Imaging Bigger: Increasing Sample Volume -- 5.3.9 Imaging Smaller: Increasing Spatial Resolution -- 5.3.10 Imaging More: Increasing Throughput -- 5.4 Summary -- References -- Chapter 6 Commercial and Open‐Source Systems -- 6.1 Introduction -- 6.1.0 Questions? Answers? -- 6.2 Commercial Systems -- 6.2.1 Carl Zeiss Lightsheet Z.1: Market Introduction and Experiences -- 6.2.1.1 Introduction -- 6.2.2 ALPHA3: Light Sheet Fluorescence Microscope -- 6.2.2.1 Digital Light Sheet Generator -- 6.2.2.2 Modular and Flexible Light Sheet Setup -- 6.2.3 Illumination Unit(s) -- 6.2.3.1 Sample Chamber and Holders -- 6.2.3.2 Detection Unit -- 6.2.3.3 Software -- 6.2.3.4 High‐Speed 3D Acquisition -- 6.2.3.5 Applications -- 6.2.3.6 Summary -- 6.2.4 Leica TCS SP8 DLS: Turning Light Sheet Microscopy Vertically -- 6.2.4.1 Light Path -- 6.2.4.2 Sample Preparation for the Leica TCS SP8 DLS -- 6.2.4.3 Convenient Software Tools to Manage Large Data Amounts -- 6.2.4.4 Technical Specifications -- 6.2.4.5 Applications -- 6.2.4.6 Imaging with Low Light Intensities -- 6.2.4.7 Imaging of Cleared Tissue.6.2.4.8 Imaging of Fast Dynamic Processes -- 6.2.4.9 High Throughput by Multiposition Experiments and Imaging of Larger Specimens -- 6.2.4.10 Advanced Applications by Combined Imaging Methods -- 6.2.4.11 Summary -- 6.2.5 The Large Selective Plane Illuminator (L‐SPI): A Versatile Illumination Module for Large Photosensitive Samples -- 6.2.5.1 Introduction -- 6.2.5.2 Design -- 6.2.5.3 Light Sheet Properties and Resolution -- 6.2.5.4 Sample Preparation -- 6.2.5.5 Application 1: Fluorescence Imaging in Live Coral Samples -- 6.2.5.6 Application 2: Fluorescence Imaging in Other Live and Fixed Samples -- 6.2.5.7 Application 3: Reflectance Imaging -- 6.2.5.8 Software, Image Processing, and Data Management -- 6.2.5.9 Price Range -- 6.2.5.10 Acknowledgment -- 6.2.6 LUXENDO's Modular Light Sheet Solutions Adapt Specifically to a Broad Spectrum of Diverse Samples and Applications -- 6.2.6.1 Introduction -- 6.2.6.2 Multiple View Selective Plane Illumination Microscope (MuVi SPIM) -- 6.2.6.3 Clearing -- 6.2.6.4 Inverted View Selective Plane Illumination Microscope (InVi SPIM) -- 6.2.6.5 Quantitative View Selective Plane Illumination Microscope (QuVi SPIM) -- 6.2.6.6 Conclusion -- 6.2.6.7 Acknowledgments -- 6.3 Open‐Source Systems -- 6.3.1 OpenSPIM: The Do It Yourself (DIY) Selective Plane Illumination Microscopy (SPIM) Approach -- 6.3.1.1 Introduction -- 6.3.1.2 The Principle of DIY SPIM -- 6.3.1.3 Of the Diversity of Biological Applications Using DIY SPIM Microscopy -- 6.3.1.4 Community -- 6.3.2 eduSPIM: Light Sheet Fluorescence Microscopy in the Museum -- 6.3.2.1 Introduction -- 6.3.2.2 Optical Design -- 6.3.2.3 Control Software and User Interface -- 6.3.2.4 Sample Choice and Sample Mounting -- 6.3.2.5 Outreach and Discussion -- 6.3.2.6 Acknowledgments -- References -- Further Reading -- Publications with Lightsheet Z.1.Chapter 7 Image Processing and Analysis of Light Sheet Microscopy Data -- 7.1 Introduction -- 7.2 Multi‐view SPIM Reconstruction -- 7.2.1 Multi‐view Registration -- 7.2.2 Multi‐view Fusion -- 7.3 Processing of Data from Other Light Sheet Microscopy Implementations -- 7.4 Big Image Data Management and Visualization -- 7.4.1 Hierarchical Data Format -- 7.4.2 Parallel Processing -- 7.4.3 Big Data Visualization -- 7.5 Analysis of Light Sheet Microscopy Datasets -- 7.5.1 Image Dimensionality Reduction for Better Analysis -- 7.5.2 Segmentation and Tracking in Light Sheet Data -- 7.5.3 Atlas Registration -- 7.6 Conclusion -- References -- Chapter 8 Imaging Molecular Dynamics Using a Light Sheet Microscope -- 8.1 Introduction -- 8.2 Fluorescence Techniques Using Light Sheet Illumination -- 8.2.1 Fluorescence Correlation Spectroscopy -- 8.2.2 Fluorescence Recovery After Photobleaching -- 8.2.3 Single‐Particle Tracking -- 8.2.4 Förster Resonance Energy Transfer -- 8.2.5 Fluorescence Anisotropy Imaging -- 8.2.6 Fluorescence Lifetime Imaging Microscopy -- 8.3 Instrumentation -- 8.3.1 Light Sheet Microscope Configurations -- 8.3.2 Objectives and Cameras -- 8.4 Considerations for Acquisition Parameters -- 8.4.1 Light Sheet Thickness Versus Field of View -- 8.4.2 Field of View Versus Frame Rate -- 8.4.3 Pixel Size Versus Spatial Resolution -- 8.4.4 Pixel Size Versus Field of View and Frame Rate -- 8.4.5 Data Rate -- 8.4.6 Synchronous Versus Asynchronous Read‐Out -- 8.4.7 Photobleaching and Phototoxicity -- 8.5 Applications of Fluorescence Techniques Performed Using Light Sheet Microscopes -- 8.5.1 Fluorescence Correlation Spectroscopy -- 8.5.2 Fluorescence Recovery After Photobleaching -- 8.5.3 Single‐Particle Tracking -- 8.5.4 Förster Resonance Energy Transfer -- 8.5.5 Fluorescence Anisotropy Imaging -- 8.5.6 Fluorescence Lifetime Imaging Microscopy.8.6 Concluding Remarks.This book provides an in-depth exploration of light sheet fluorescence microscopy (LSFM), a revolutionary imaging technique that enhances resolution and minimizes phototoxic effects by illuminating specimens with a thin sheet of light. The text covers various aspects of LSFM, including illumination techniques, sample mounting, detection methods, and microscope configurations. It discusses both commercial and open-source systems as well as image processing and data analysis. Additionally, the book explores the application of LSFM in diverse fields such as biology and drug development, making it a valuable resource for scientists and researchers seeking to understand and apply this advanced microscopy technology. The intended audience includes professionals in biological sciences and microscopy technology.Generated by AI.MicroscopyGenerated by AIConfocal fluorescence microscopyGenerated by AIMicroscopyConfocal fluorescence microscopy502.82Reynaud Emmanuel G145602Tomancak Pavel1840602MiAaPQMiAaPQMiAaPQBOOK9911020039303321Light Sheet Fluorescence Microscopy4420191UNINA