11683nam 2200589 450 991083070900332120230713061655.03-527-81640-23-527-81639-93-527-81642-9(CKB)4940000000615558(MiAaPQ)EBC6798571(Au-PeEL)EBL6798571(OCoLC)1285170587(OCoLC)1301180280(OCoLC-P)1301180280(CaSebORM)9783527344901(PPN)270645209(EXLCZ)99494000000061555820220729d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierElectronic waste recycling and reprocessing for a sustainable future /Maria E. Holuszko, Amit Kumar, and Denise C. R. Espinosa1st.Hoboken, New Jersey :John Wiley & Sons, Inc.,[2022]©20221 online resource (339 pages)3-527-34490-X Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction, Vision, and Opportunities -- 1.1 Background -- 1.2 E‐Waste -- 1.3 Outline -- References -- Chapter 2 e‐Waste Management and Practices in Developed and Developing Countries* -- 2.1 Introduction -- 2.2 Overview on WEEE Management and Practices -- 2.3 International WEEE Management and Transboundary Movement -- 2.4 WEEE Management and Practices - Developed and Developing Countries -- 2.5 Developed Countries -- 2.5.1 Switzerland -- 2.5.2 Japan -- 2.5.3 Australia -- 2.6 Developing Countries -- 2.6.1 Brazil -- 2.6.2 India -- 2.6.3 South Africa -- 2.6.4 Nigeria -- 2.6.5 Taiwan -- 2.7 Conclusions -- References -- Chapter 3 e‐Waste Transboundary Movement Regulations in Various Jurisdictions* -- 3.1 Background -- 3.2 International Legislation and Transboundary Movement -- 3.3 Extended Producer Responsibility (EPR) -- 3.4 Regulations in Various Jurisdictions -- 3.4.1 Europe -- 3.4.1.1 France -- 3.4.1.2 Germany -- 3.4.1.3 Switzerland -- 3.4.1.4 Norway -- 3.4.2 Americas -- 3.4.2.1 United States of America -- 3.4.2.2 Canada -- 3.4.2.3 Brazil -- 3.4.3 Asia -- 3.4.3.1 Japan -- 3.4.3.2 China -- 3.4.3.3 Taiwan -- 3.4.3.4 India -- 3.4.4 Africa -- 3.4.4.1 South Africa -- 3.4.4.2 Nigeria -- 3.4.5 Australia -- 3.5 Conclusions -- References -- Chapter 4 Approach for Estimating e‐Waste Generation -- 4.1 Background -- 4.2 Econometric Analysis -- 4.3 Consumption and Use/Leaching/Approximation 1 Method -- 4.4 The Sales/Approximation 2 Method -- 4.5 Market Supply Method -- 4.5.1 Simple Delay -- 4.5.2 Distribution Delay Method -- 4.5.3 Carnegie Mellon Method/Mass Balance Method -- 4.6 Time‐Step Method -- 4.7 Summary of Estimation Methods -- 4.8 Lifespan of Electronic Products -- 4.9 Global e‐Waste Estimation -- References.Chapter 5 Materials Used in Electronic Equipment and Manufacturing Perspectives* -- 5.1 Introduction -- 5.2 Large Household Appliances (LHA) -- 5.3 Small Household Appliance (SHA) -- 5.4 IT and Telecommunications Equipment -- 5.4.1 Computers and Notebooks -- 5.4.2 Monitors and Screens -- 5.4.3 Mobile Phones (MP) -- 5.4.4 Printed Circuit Boards (PCB) -- 5.5 Photovoltaic (PV) Panels -- 5.6 Lighting Equipment -- 5.7 Toys, Leisure, and Sport -- 5.8 Future Trends in WEEE - Manufacturing, Design, and Demand -- References -- Chapter 6 Recycling Technologies - Physical Separation -- 6.1 Introduction -- 6.2 Dismantling -- 6.3 Comminution/Size Reduction -- 6.3.1 Shredders -- 6.3.2 Hammer Mills -- 6.3.3 High‐Voltage Fragmentation -- 6.3.4 Knife Mills -- 6.3.5 Cryogrinding -- 6.4 Particle Size Analysis -- 6.5 Size Separation/Classification -- 6.5.1 Screening -- 6.5.2 Classification -- 6.5.2.1 Centrifugal Classifier -- 6.5.2.2 Gravitational Classifiers -- 6.6 Magnetic Separation -- 6.6.1 Low‐Intensity Magnetic Separators -- 6.6.2 High‐Intensity Magnetic Separators -- 6.7 Electrical Separation -- 6.7.1 Corona Electrostatic Separation -- 6.7.2 Triboelectric Separation -- 6.7.3 Eddy Current Separation -- 6.8 Gravity Separation -- 6.8.1 Jigs -- 6.8.2 Spirals -- 6.8.3 Shaking Tables -- 6.8.4 Zig‐Zag Classifiers -- 6.8.5 Centrifugal Concentrators -- 6.8.6 Dense Medium Separation (DM Bath/Cyclone) -- 6.9 Froth Flotation -- 6.10 Sensor‐Based Sorting -- 6.11 Example Flowsheets -- References -- Chapter 7 Pyrometallurgical Processes for Recycling Waste Electrical and Electronic Equipment -- 7.1 Introduction -- 7.2 Printed Circuit Boards -- 7.3 Pyrometallurgical Processes -- 7.3.1 Smelting -- 7.3.1.1 Copper‐Smelting Processes - Sulfide Route -- 7.3.1.2 Copper‐Smelting Processes - Secondary Smelters -- 7.3.1.3 Lead‐Smelting Processes.7.3.1.4 Advantages and Limitations of Smelting Processes -- 7.3.2 Electrochemical Processes -- 7.3.2.1 High‐Temperature Electrolysis -- 7.3.2.2 Low‐Temperature Electrolysis -- 7.3.3 Other Pyrometallurgical Operations Used in Electronic Waste Recycling -- 7.3.3.1 Roasting -- 7.3.3.2 Molten Salt Oxidation Treatment -- 7.3.3.3 Distillation -- 7.3.3.4 Pyrolysis -- References -- Chapter 8 Recycling Technologies - Hydrometallurgy -- 8.1 Background -- 8.2 Waste Printed Circuit Boards (WPCBs) -- 8.3 Photovoltaic Modules (PV) -- 8.4 Batteries -- 8.5 Light‐Emitting Diodes (LEDs) -- 8.6 Trends -- References -- Chapter 9 Recycling Technologies - Biohydrometallurgy -- 9.1 Introduction -- 9.2 Bioleaching: Metal Winning with Microbes -- 9.3 Biosorption: Selective Metal Recovery from Waste Waters -- 9.3.1 Biosorption Via Metal Selective Peptides -- 9.3.2 Chelators Derived from Nature -- 9.4 Bioflotation: Separation of Particles with Biological Means -- 9.5 Bioreduction and Bioaccumulation: Nanomaterials from Waste -- 9.6 Conclusion -- References -- Chapter 10 Processing of Nonmetal Fraction from Printed Circuit Boards and Reutilization -- 10.1 Background -- 10.2 Nonmetal Fraction Composition -- 10.3 Benefits of NMF Recycling -- 10.3.1 Economic Benefits -- 10.3.2 Environmental Protection and Public Health -- 10.4 Recycling of NMF -- 10.4.1 Physical Recycling -- 10.4.1.1 Size Classification -- 10.4.1.2 Gravity Separation -- 10.4.1.3 Magnetic Separation -- 10.4.1.4 Electrical Separation -- 10.4.1.5 Froth Flotation -- 10.4.2 Chemical Recycling -- 10.5 Potential Usage -- References -- Chapter 11 Life Cycle Assessment of e‐Waste - Waste Cellphone Recycling -- 11.1 Introduction -- 11.2 Background -- 11.2.1 Theory of Life Cycle Assessment -- 11.3 LCA Studies on WEEE -- 11.3.1 Applications on WEEE Management Strategy -- 11.3.2 Applications on WEEE Management System.11.3.3 Applications on Hazardous Potential of WEEE Management and Recycling -- 11.4 Case Study -- 11.4.1 Goal and Scope Definition -- 11.4.1.1 Functional Unit -- 11.4.1.2 System Boundary -- 11.4.2 Life Cycle Inventory -- 11.4.2.1 Formal Collection -- 11.4.2.2 Informal Collection -- 11.4.2.3 Mechanical Dismantling -- 11.4.2.4 Plastic Recycling -- 11.4.2.5 Screen Glass Recycling -- 11.4.2.6 Battery Disposal -- 11.4.2.7 Electronic Refining for Materials -- 11.4.3 Life Cycle Impact Assessment -- 11.4.4 Results -- 11.4.4.1 Feature Phone Formal Collection Scenario -- 11.4.4.2 Feature Phone Informal Collection Scenario -- 11.4.4.3 Smartphone Formal Collection Scenario -- 11.4.4.4 Smartphone Informal Collection Scenario -- 11.4.5 Discussion -- 11.5 Conclusion -- References -- Chapter 12 Biodegradability and Compostability Aspects of Organic Electronic Materials and Devices -- 12.1 Introduction -- 12.1.1 Technological Innovation and Waste -- 12.1.2 Eco‐friendliness -- 12.1.3 Organic Electronics -- 12.1.4 Opportunities for Green Organic Electronics -- 12.2 State of the Art in Biodegradable Electronics -- 12.3 Organic Field‐Effect Transistors (OFETs) -- 12.3.1 Fundamentals -- 12.3.2 Anthraquinone, Benzoquinone, and Acenequinone -- 12.3.3 Quinacridones -- 12.4 Electrochemical Energy Storage -- 12.4.1 Quinones -- 12.4.2 Dopamine -- 12.4.3 Melanins -- 12.4.4 Tannins -- 12.4.5 Lignin -- 12.5 Biodegradation in Natural and Industrial Ecosystems -- 12.5.1 Degradation and Biodegradation -- 12.5.2 Composting Process -- 12.5.3 Materials Half‐Life Under Composting Conditions -- 12.5.4 Biodegradation in the Environment -- 12.6 Microbiome in Natural and Industrial Ecosystems -- 12.6.1 The Ruminant-Hay Natural Ecosystem -- 12.6.2 The Termite-Wood Natural Ecosystem -- 12.6.3 The Industrial Composter-Biowaste Ecosystem -- 12.6.3.1 Municipal Composting Facility.12.6.3.2 Engineered Composting Facility -- 12.6.4 Specialized Inoculant Adapted to Organic Matter -- 12.6.5 Specialized Inoculant Adapted to Heavy Metals -- 12.7 Concluding Remarks and Perspectives -- Acknowledgment -- References -- Chapter 13 Circular Economy in Electronics and the Future of e‐Waste -- 13.1 Introduction -- 13.2 Digitalization and the Need for Electronic Devices -- 13.3 Recycling and Circular Economy -- 13.4 Challenges for e‐Waste Recycling and Circular Economy -- 13.5 Drivers for Change - Circular Economy -- 13.6 Demand for Recyclable Products -- 13.7 Summary -- References -- Index -- EULA.Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry In Electronic Waste: Recycling and Reprocessing for a Sustainable Future, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting value from electronic waste while aiming for a zero-waste scenario in industrial production. The book discusses the manufacturing and use of materials in electronic devices while presenting an overview of separation methods for industrial materials. Readers will also benefit from a global overview of various national and international regulations related to the topic of electronic and electrical waste. A must-read resource for scientists and engineers working in the production and development of electronic devices, the authors provide comprehensive overviews of the benefits of achieving a zero-waste solution in electronic and electrical waste, as well as the risks posed by incorrectly disposed of electronic waste. Readers will enjoy: An introduction to electronic waste, including the opportunities presented by zero-waste technologies and solutions Explorations of e-waste management and practices in developed and developing countries and e-waste transboundary movement regulations in a variety of jurisdictions Practical discussions of approaches for estimating e-waste generation and the materials used in electronic equipment and manufacturing perspectives In-depth treatments of various recycling technologies, including physical separation, pyrometallurgy, hydrometallurgy, and biohydrometallurgy Perfect for materials scientists, electronic engineers, and metal processing professionals, Electronic Waste: Recycling and Reprocessing for a Sustainable Future will also earn a place in the libraries of industrial chemists and professionals working in organizations that use large amounts of chemicals or produce electronic waste.Recycling (Waste, etc.)Technological innovationsSustainable developmentRecycling (Waste, etc.)Technological innovations.Sustainable development.363.7282Holuszko M. E.1606710Kumar AmitEspinosa Denise C. R.MiAaPQMiAaPQMiAaPQBOOK9910830709003321Electronic waste3932651UNINA05647nam 2200733 a 450 991101987390332120200520144314.09786610739578978128073957612807395769780470028728047002872697804700287110470028718(CKB)1000000000357346(EBL)284443(OCoLC)476034452(SSID)ssj0000134996(PQKBManifestationID)11146464(PQKBTitleCode)TC0000134996(PQKBWorkID)10056855(PQKB)11396094(MiAaPQ)EBC284443(Perlego)2756883(EXLCZ)99100000000035734620060927d2007 uy 0engur|n|---|||||txtccrData lifecycles managing data for strategic advantage /Roger Reid, Gareth Fraser-King, W. David SchwadererChichester, England ;Hoboken, NJ Wileyc20071 online resource (270 p.)Description based upon print version of record.9780470016336 0470016337 Includes bibliographical references and index.Data Lifecycles; Contents; Preface; 1 Introducing Utility Computing; 1.1 Real problems and real solutions; 1.1.1 Real issues identified - regulation, legislation and the law; 1.1.2 More regulation, legislation and the law; 1.1.3 Current storage growth; 1.2 New storage management; 1.2.1 What are the things organisations need to consider?; 1.2.2 What does data lifecycle management mean?; 1.2.3 Why is IT lifecycle management important?; 1.2.4 Goals of data lifecycle management; 2 The Changing IT Imperative; 2.1 Introduction to utility computing; 2.2 General market highlights2.2.1 Current storage growth2.2.2 Enterprises for which DLM is critical; 2.3 Real challenges and opportunities; 2.3.1 Real issues identified; 2.3.2 Data compliance; 2.3.3 Case study in ineffective storage reporting; 2.4 Summary; 3 Being Compliant; 3.1 So what are the regulations?; 3.2 Financial services companies; 3.2.1 Crime in the finance sector; 3.3 Telecommunications companies; 3.4 Utilities companies; 3.5 Public authorities and government; 3.6 Managing data for compliance is just a specialised form of data management; 3.7 Just plain junk data!; 3.8 The bottom line - what is mandated?3.8.1 Record retention and retrieval3.8.2 Auditable process; 3.8.3 Reporting in real time; 3.8.4 Integrating data management from desktop to data centre to offsite vault; 3.8.5 Challenge - the data dilemma; 4 Data Taxonomy; 4.1 A new data management consciousness level; 4.1.1 De-mystifying data classification; 4.1.2 Defining data classification; 4.1.3 Classification objectives; 4.1.4 Various approaches to data classification; 4.2 Data personification; 4.2.1 Business infrastructure mapping analysis; 4.3 Classification model and framework; 4.4 Customer reporting; 4.4.1 Summary reports4.4.2 Detailed reports4.4.3 Summary graphs; 4.5 Summary; 5 Email Retention; 5.1 Email management to achieve compliance; 5.2 What is archiving?; 5.2.1 Email archiving requirements; 5.3 How should organisations manage their email records?; 5.4 Email retention policies are for life - not just for Christmas; 5.5 How companies can gain competitive advantage using compliance; 5.5.1 Compliance makes good business sense; 5.6 What laws govern email retention?; 5.6.1 How long do we have to keep email records?; 5.7 Write once, secure against tampering; 5.8 Storage recommendations for email5.9 Conclusion6 Security; 6.1 Alerting organisations to threats; 6.1.1 Vulnerability identified and early warnings; 6.1.2 Early awareness of vulnerabilities and threats in the wild; 6.1.3 Listening posts; 6.2 Protecting data and IT systems; 6.2.1 Threats blocked using vulnerability signatures to prevent propagation; 6.2.2 Preventing and detecting attacks; 6.2.3 Managing security in a data centre; 6.2.4 Monitoring and identification of systems versus vulnerabilities and policies; 6.2.5 Responding to threats and replicating across the infrastructure6.2.6 Patches and updates implemented across infrastructureBusinesses now rely almost entirely on applications and databases, causing data and storage needs to increase at astounding rates. It is therefore imperative for a company to optimize and simplify the complexity of managing its data resources. Plenty of storage products are now available, however the challenge remains for companies to proactively manage their storage assets and align the resources to the various departments, divisions, geographical locations and business processes to achieve improved efficiency and profitability. Data Lifecycles identifies ways to incorporate Database managementProduct life cycleInformation retrievalInformation storage and retrieval systemsManagementDatabase management.Product life cycle.Information retrieval.Information storage and retrieval systemsManagement.005.74Reid Roger(Roger S.)1841059Fraser-King Gareth1841060Schwaderer W. David1947-1841061MiAaPQMiAaPQMiAaPQBOOK9911019873903321Data lifecycles4420666UNINA