00996nam a2200289 i 450099100077513970753620020509175236.0000114s1997 it ||| | ita 8846401530b11408170-39ule_instPARLA215164ExLDipart. Scienze pedagogicheita304Guidicini, Paolo440398Valori, territorio, ambiente /a cura di Paolo Guidicini e Emanuele Sgroi2. ed.Milano :F. Angeli,c1997222 p. ;22 cm.Sociologia urbana e rurale ;43TerritorioSociologiaSgroi, Emanuele.b1140817001-03-1701-07-02991000775139707536LE022 304 GUI01.0112022000007160le022-E0.00-l- 01010.i1159629601-07-02Valori, territorio, ambiente815961UNISALENTOle02201-01-00ma -itait 0105136nam 2200673Ia 450 991101930990332120200520144314.0978661246291797812824629151282462911978352762921335276292119783527629220352762922X(CKB)2550000000006858(EBL)481264(OCoLC)536379926(SSID)ssj0000364935(PQKBManifestationID)11290346(PQKBTitleCode)TC0000364935(PQKBWorkID)10419483(PQKB)11070780(MiAaPQ)EBC481264(PPN)184681332(Perlego)2766910(EXLCZ)99255000000000685820090821d2010 uy 0engur|n|---|||||txtccrQuantum Biochemistry /edited by Cherif F. MattaWeinheim Wiley-VCH Verlag GmbH & Co.20101 online resource (980 p.)Description based upon print version of record.9783527323227 3527323228 Includes bibliographical references and index.Quantum Biochemistry; Acknowledgment; Congratulations to Professor Ada Yonath for Winning the 2009 Nobel Prize in Chemistry; Introductory Reflections on Quantum Biochemistry: From Context to Contents; Contents; List of Contributors; Part One Novel Theoretical, Computational, and Experimental Methods and Techniques; 1 Quantum Kernels and Quantum Crystallography: Applications in Biochemistry; 1.1 Introduction; 1.2 Origins of Quantum Crystallography (QCr); 1.2.1 General Problem of N-Representability; 1.2.2 Single Determinant N-Representability; 1.2.3 Example Applications of Clinton.s Equations1.2.3.1 Beryllium1.2.3.2 Maleic Anhydride; 1.3 Beginnings of Quantum Kernels; 1.3.1 Computational Difficulty of Large Molecules; 1.3.2 Quantum Kernel Formalism; 1.3.3 Kernel Matrices: Example and Results; 1.3.4 Applications of the Idea of Kernels; 1.3.4.1 Hydrated Hexapeptide Molecule; 1.3.4.2 Hydrated Leu1-Zervamicin; 1.4 Kernel Density Matrices Led to Kernel Energies; 1.4.1 KEM Applied to Peptides; 1.4.2 Quantum Models within KEM; 1.4.2.1 Calculations and Results Using Different Basis Functions for the ADPGV7b Molecule1.4.2.2 Calculations and Results Using Different Quantum Methods for the Zaib4 Molecule1.4.2.3 Comments Regarding KEM; 1.4.3 KEM Applied to Insulin; 1.4.3.1 KEM Calculation Results; 1.4.3.2 Comments Regarding the Insulin Calculations; 1.4.4 KEM Applied to DNA; 1.4.4.1 KEM Calculation Results; 1.4.4.2 Comments Regarding the DNA Calculations; 1.4.5 KEM Applied to tRNA; 1.4.6 KEM Applied to Rational Design of Drugs; 1.4.6.1 Importance of the Interaction Energy for Rational Drug Design1.4.6.2 Sample Calculation: Antibiotic Drug in Complex (1O9M) with a Model Aminoacyl Site of the 30s Ribosomal Subunit1.4.6.3 Comments Regarding the Drug-Target Interaction Calculations; 1.4.7 KEM Applied to Collagen; 1.4.7.1 Interaction Energies; 1.4.7.2 Collagen 1A89; 1.4.7.3 Comments Regarding the Collagen Calculations; 1.4.8 KEM Fourth-Order Calculation of Accuracy; 1.4.8.1 Molecular Energy as a Sum over Kernel Energies; 1.4.8.2 Application to Leu1-zervamicin of the Fourth-Order Approximation of KEM; 1.4.9 KEM Applied to Vesicular Stomatitis Virus Nucleoprotein, 33 000 Atom Molecule1.4.9.1 Vesicular Stomatitis Virus Nucleoprotein (2QVJ) Molecule1.4.9.2 Hydrogen Bond Calculations; 1.4.9.3 Comments regarding the 2QVJ Calculations; 1.5 Summary and Conclusions; References; 2 Getting the Most out of ONIOM: Guidelines and Pitfalls; 2.1 Introduction; 2.2 QM/MM; 2.3 ONIOM; 2.4 Guidelines for the Application of ONIOM; 2.4.1 Summary; 2.5 The Cancellation Problem; 2.6 Use of Point Charges; 2.7 Conclusions; References; 3 Modeling Enzymatic Reactions in Metalloenzymes and Photobiology by Quantum Mechanics (QM) and Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations3.1 IntroductionDivided into five major parts, the two volumes of this ready reference cover the tailoring of theoretical methods for biochemical computations, as well as the many kinds of biomolecules, reaction and transition state elucidation, conformational flexibility determination, and drug design. Throughout, the chapters gradually build up from introductory level to comprehensive reviews of the latest research, and include all important compound classes, such as DNA, RNA, enzymes, vitamins, and heterocyclic compounds.The result is in-depth and vital knowledge for both readers already working in theQuantum biochemistryBiochemistryQuantum biochemistry.Biochemistry.572Matta Cherif F597254MiAaPQMiAaPQMiAaPQBOOK9911019309903321Quantum Biochemistry4416607UNINA