05253nam 2200625Ia 450 991100664360332120200520144314.01-280-63096-597866106309670-08-045908-0(CKB)1000000000358014(EBL)270180(OCoLC)476002134(SSID)ssj0000098599(PQKBManifestationID)11544205(PQKBTitleCode)TC0000098599(PQKBWorkID)10135968(PQKB)11682017(MiAaPQ)EBC270180(EXLCZ)99100000000035801420050803d2005 uy 0engur|n|---|||||txtccrAdvances in gold ore processing /edited by Mike D. Adams1st ed.Boston Elsevier20051 online resource (1077 p.)Developments in mineral processing,0167-4528 ;15Description based upon print version of record.0-444-51730-8 Includes bibliographical references and index.Cover; Advances in Gold Ore Processing; Contributors; Table of Contents; Preface; Acknowledgements; List of Acronyms; List of Mineral Formulae; Gold - An historical introduction; Gold in Ancient Egypt; Early Gold-Mining Centers; Gold and Alchemy; Uses of Gold; Gilding; Gilding of metals; Gilding of glass and porcelain; Gold in the glass industry; Occurrence of Gold; Processing of Gold Ores; Gold panning; Amalgamation; Chlorination; Cyanidation; Refining of gold; Some recent trends in gold ore processing; Gold Standards and Assaying; Gold in Currency; Banks; Gold Museums; Suggested ReadingPart I. Project DevelopmentI.1 Feasibility Study Management; Sampling procedures; Introduction; Sampling Basics; Importance of minimizing bias; Overall precision; Components of Sampling Error; Preparation error; Delimitation and extraction errors; Weighting and periodic quality fluctuation errors; Fundamental error and minimum sample mass; Percussion Hole Sampling; Blast-Hole Sampling; Plant Sampling; Sampling from Stationary Situations; Sampling from stockpiles; Sampling from trucks and railway wagons; Sampling from holding tanks and vessels; Sample Processing; Conclusions; ReferencesMineralogical investigation of gold oresGold Mineralogy; Gold minerals and alloys; Solid-solution gold; Colloidal gold; Surface gold; Forms and carriers of gold; Process Mineralogy of Gold; Gravity concentration; Floatability of gold minerals and carriers; Size and shape of gold grains; Silver content of native gold; Activators and depressants; Collector loading; Composition of gold mineral; Leachability of gold minerals; Cyanidation in leach tanks; Heap leaching; Other lixiviants; Response to oxidative pretreatment; Process mineralogy of gold from autoclave-CIL circuitsProcess mineralogy of gold from roaster-CIL circuitsProcess mineralogy of gold from bio-oxidized leach circuits; Response to ultrafine grinding CIL; Methodology for Studying Gold Minerals; Instrumental Analysis for Gold; Concluding Remarks; Acknowledgments; References; Process flowsheet selection; Introduction; Comminution Process Options; Overview; Ore characteristics; Throughput; Downstream process requirements; Operating cost; Free-Milling Ore Process Options; Overview; Site-specific issues; Gravity-recoverable gold; Treatment of high-silver ores; Complex Ore Process Options; OverviewTreatment of high-copper oresPreg-robbing ores; Oxygen-consuming ores; Issues associated with mercury; Refractory Ore Process Options; Refractory Process Selection; Factors for consideration in Refractory Process Selection; Gold mineralogy; Arsenic content; Sulfide content; Gangue mineralogy; Ore variability; Project scale; Incremental gold recovery; Flotation performance; Site-specific environmental considerations; Project location and infrastructure; Water quality and availability; Power costs; Availability of neutralization reagents; Cyanide consumption and costs; Project lifeAbility to pilotThe gold processing industry is experiencing change. As free-milling and oxide ores become depleted, more complex polymetallic and refractory ores are being processed, coupled with increasing pressure for stricter environmental compliance. Recent years have also seen a steady reduction in mineral processing and metallurgy graduates and a gradual loss of older operating experience. A contribution to documenting current and future best practice in gold ore processing seems timely. The focus of this volume is on advances in current gold plant operation, from conception to closure; chaptDevelopments in mineral processing ;15.Gold oresResearchOre-dressingResearchGold oresResearch.Ore-dressingResearch.669/.22Adams Mike D1825430MiAaPQMiAaPQMiAaPQBOOK9911006643603321Advances in gold ore processing4393102UNINA11782nam 22005653 450 991102009240332120240721090305.09783527837021352783702797835278370073527837000(MiAaPQ)EBC31534251(Au-PeEL)EBL31534251(CKB)33030947200041(Exl-AI)31534251(EXLCZ)993303094720004120240721d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierChemical Physics of Polymer Nanocomposites Processing, Morphology, Structure, Thermodynamics, Rheology1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (1062 pages)9783527349579 352734957X Cover -- Volume I -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Classification of Nanofillers, Nano‐Objects, Nanomaterials, and Polymer Nanocomposites Based on Chemical Nature and Identity -- 1.1 Classification of Nanocomposites -- 1.2 Classification of Nanofillers -- 1.3 Classification of Nano‐Objects and Nanomaterials -- 1.4 Production Method and Existing Form of Nano‐Objects -- 1.5 Classification of Polymer Nanocomposites -- 1.6 Summaries -- References -- Chapter 2 Biological and Chemical Synthesis of Nanoparticles -- 2.1 Introduction -- 2.2 Synthesis Approach of Nanoparticles -- 2.2.1 Bottom‐Up Approach -- 2.2.1.1 Non‐Biological Synthesis of Nanoparticles -- 2.2.2 Top‐Down Approach -- 2.2.2.1 Spinning Methods -- 2.2.2.2 Template Based Synthesis -- 2.2.2.3 Chemical Vapor Deposition -- 2.2.2.4 Laser Pyrolysis Synthesis of Nanoparticles -- 2.2.2.5 Flame Spray Pyrolysis Synthesis of Nanoparticles -- 2.2.2.6 Inert Gas Condensation -- 2.2.2.7 Laser Ablation -- 2.2.2.8 Mechanical Milling -- 2.2.2.9 Chemical Etching -- 2.2.2.10 Electro‐Explosion of Wire -- 2.2.3 Biological Synthesis of Nanoparticles -- 2.2.3.1 Bacteria Mediated Nanoparticles -- 2.2.3.2 Fungi Mediated Nanoparticles -- 2.2.3.3 Yeasts Mediated Nanoparticles -- 2.2.3.4 Algae Mediated Nanoparticles -- 2.2.3.5 Plant‐Mediated Nanoparticles -- 2.3 Conclusion -- References -- Chapter 3 Using In situ Polymerization for Manufacturing of Polymer Nanocellulose -- 3.1 Introduction -- 3.2 In situ Polymerization -- 3.3 Cellulose Nanoparticles -- 3.4 Polymer Nanocellulose -- 3.5 Method of Polymer Nanocomposite Processing -- 3.5.1 Solvent Casting and Evaporation -- 3.5.2 Coating Polymerization Process -- 3.5.3 Melt Processing -- 3.5.4 Radical Polymerization -- 3.5.5 Other Methods -- 3.6 Applications of In situ Polymerization Methods for the Production of Nanocellulose Materials.3.7 Future of In situ Polymerization Manufacturing Processes -- 3.8 Conclusion -- References -- Chapter 4 Manufacturing of Nanocomposites by Electrospinning -- 4.1 Introduction -- 4.2 Electrospinning Process -- 4.2.1 Principles of the Process -- 4.2.2 Solution Parameters -- 4.2.2.1 Concentration and Viscosity of Solution -- 4.2.2.2 Surface Tension -- 4.2.2.3 Conductivity of Solution -- 4.2.2.4 Polymer Molecular Weight -- 4.2.2.5 Addition of Inorganic Components -- 4.2.2.6 Applied Voltage -- 4.2.2.7 Receiving Distance -- 4.2.2.8 Feed Rate -- 4.2.2.9 Electrospinning Type/Principle/Spinneret -- 4.2.2.10 Receiver Morphology/Specification -- 4.2.3 Environmental Parameters -- 4.2.3.1 Temperature -- 4.2.3.2 Humidity -- 4.3 Fiber Type -- 4.3.1 Organic Polymers (Natural Polymers, Synthetic Polymers) -- 4.3.1.1 Natural Polymers -- 4.3.1.2 Synthetic Polymers -- 4.3.2 Inorganic Materials -- 4.3.2.1 Carbon Nanofibers -- 4.3.2.2 Metal Oxide Nanofibers -- 4.3.2.3 Metal Nanofibers -- 4.4 Electrospinning of Nanocomposite -- 4.4.1 Polymer/Polymer -- 4.4.2 Polymer/Inorganic -- 4.4.3 Inorganic/Inorganic -- 4.5 Application -- 4.5.1 Filtration -- 4.5.2 E‐spun Nanofibers for Hazardous Substances Adsorption -- 4.5.3 E‐spun Nanofibers for Bioengineering Separation -- 4.5.4 E‐spun Nanofibers for Insulation -- 4.5.5 Medical/Biological Applications -- 4.5.6 Catalysis -- 4.5.7 Energy Conversion and Storage -- 4.5.8 Triboelectric Nanogenerator -- 4.6 Summary and Outlook -- References -- Chapter 5 Polymer Nanocomposites Based on Metal Oxide Nanoplatelets -- 5.1 Introduction -- 5.2 Polymers -- 5.2.1 Polymer Structure -- 5.2.2 Design Approaches to Polymers -- 5.2.2.1 Surface‐initiated Atom‐Transfer Radical Polymerization (SI‐ATRP) -- 5.2.2.2 Surface‐initiated Reversible Addition-Fragmentation Chain‐Transfer (SI‐RAFT) Strategy -- 5.3 Properties of Nanoplatelets (NPLs).5.3.1 Applications of Nanoplatelets -- 5.4 Polymer-Metal Oxide Nanocomposite Materials -- 5.4.1 Properties of Polymer-Metal Oxide Nanocomposites -- 5.4.1.1 Electrical Properties -- 5.4.1.2 Optical Properties -- 5.4.1.3 Thermal Properties -- 5.4.1.4 Mechanical Properties -- 5.4.2 Designs of Polymer-Metal Oxide Composites -- 5.4.3 Synthesis Methods of Polymer-Metal Oxide Composites -- 5.4.3.1 Blending/Mixing -- 5.4.3.2 In situ polymerization -- 5.4.3.3 Sol-Gel Process -- 5.5 General Applications of Polymer-Metal Oxide Composites -- 5.5.1 Applications of Polymer-Metal Oxide Composites in Sensors -- 5.5.2 Applications of Polymer-Metal Oxide Composites in Supercapacitors -- 5.6 Conclusion -- Acknowledgments -- References -- Chapter 6 Polymer Nanocomposites Filled in Carbon Nanotubes: Properties and Applications -- 6.1 Introduction -- 6.1.1 Polymer Nanocomposites -- 6.1.2 Carbon Nanotubes -- 6.1.2.1 Functionalization of CNTs -- 6.1.3 Potential Uses of CNT‐based Polymer Nanocomposites -- 6.1.4 Some Examples of Thermoplastics Used as Nanocomposite Matrix -- 6.1.4.1 Poly (Trimethylene Terephthalate) -- 6.1.4.2 Acrylonitrile Butadiene Styrene -- 6.1.4.3 Polycarbonate -- 6.1.4.4 Poly (Lactic Acid) -- 6.2 Experimental Section: Production of Nanocomposites Filled CNT -- 6.2.1 CNT Functionalization -- 6.2.2 Polyester‐based CNT Nanocomposites: PTT/CNT -- 6.2.3 Blend‐based CNT Nanocomposites: PTT/ABS/CNT -- 6.2.4 Blend‐based CNT Nanocomposites: PC/ABS/CNT -- 6.2.4.1 Injection Molding Process -- 6.2.5 Mechanical, Electrical Characterization and Morphology -- 6.3 Results and Discussion -- 6.3.1 CNT Functionalization -- 6.3.2 Electrical and Mechanical Properties of CNT/Polymer Nanocomposites -- 6.3.3 Electrical and Mechanical Properties of Polymer Blends‐based CNT Nanocomposites -- 6.3.3.1 PTT/ABS/MWCNT Films -- 6.3.3.2 PC/ABS/MWCNT Injection Molded Samples.6.4 Conclusions -- Acknowledgments -- References -- Chapter 7 Polymer Nanocomposites Filled in Nanocellulose and Cellulose‐whiskers -- 7.1 Introduction -- 7.2 Nanocellulose: Extraction, Types, and Application -- 7.3 Polymers Nanocomposites -- 7.3.1 Thermoplastic -- 7.3.2 Thermosetting -- 7.3.3 Elastomers -- 7.4 Nanocellulose Nanocomposite Applications -- 7.5 Processing: Different Approaches and Dispersion Methods of Nanocellulose -- 7.6 Future Trends and Perspectives -- Acknowledgments -- References -- Chapter 8 Polymer Nanocomposites Based on Nano Chitin -- 8.1 Introduction -- 8.2 Top‐Down Approach for the Preparation of Nanochitins -- 8.3 Top‐Down Approach for the Preparation of Nanochitin/Polymer Composites -- 8.4 Bottom‐Up Approach for the Preparation of Nanochitins -- 8.5 Bottom‐Up Approach for the Preparation of Nanochitin/Polymer Composites -- 8.6 Conclusions -- Acknowledgment -- References -- Chapter 9 Nanostarch‐Filled Polymer Nanocomposites -- 9.1 Introduction -- 9.2 Nanostarch -- 9.2.1 Starch Nanocrystals (SNCs) -- 9.2.2 Amorphous Starch Nanoparticles (SNPs) -- 9.2.3 Nanostarch Functionalization -- 9.3 Nanostarch‐Filled Nanocomposites from Synthetic Polymers -- 9.4 Nanostarch‐Filled Nanocomposites from Natural Polymers -- 9.4.1 Nanostarch‐Filled Starch‐Based Nanocomposites -- 9.4.1.1 Applications of Nanostarch-Starch Nanocomposites in Food Packaging -- 9.5 Regulatory Aspects -- 9.6 Summary and Future Perspectives -- References -- Chapter 10 Polymer Nanocomposites Based on Nanolignin: Preparation, Properties, and Applications -- 10.1 Introduction -- 10.2 Extraction of Lignin -- 10.3 Preparation of Nanolignin and Lignin Nanoparticles -- 10.3.1 Antisolvent Precipitation -- 10.3.1.1 Acid Solution as Antisolvent -- 10.3.1.2 Supercritical CO2 as Antisolvent -- 10.3.2 Physiochemical Preparation of Lignin Nanoparticles -- 10.3.2.1 Homogenization.10.3.2.2 Ultrasonication -- 10.3.3 Ice Segregation‐induced Self‐assembly -- 10.3.4 Electrospinning of Solutions -- 10.3.5 Aerosol Flow Synthesis -- 10.4 Properties of Nanolignin -- 10.5 Nanolignin Based Nanocomposites -- 10.5.1 Thermoplastic-Lignin Nanocomposites -- 10.5.2 Thermoset-Lignin Nanocomposites -- 10.5.2.1 Formaldehyde‐Based Thermoset-Lignin Nanocomposite -- 10.5.2.2 Epoxy‐Based Thermoset-Lignin Nanocomposite -- 10.5.3 Elastomer- Lignin Nanocomposites -- 10.5.3.1 Natural Rubber‐Based Elastomer-Lignin Nanocomposite -- 10.5.3.2 Synthetic Rubber‐Based Elastomer-Lignin Nanocomposite -- 10.6 Applications of Nanolignin and Lignin Nanocomposites -- 10.6.1 Antibacterial Effect -- 10.6.2 Reinforcing Materials -- 10.6.3 Anti‐ultraviolet Effect -- 10.6.4 Food Packaging Films -- 10.6.5 Green Synthesis of Phenol‐formaldehyde -- 10.6.6 Lignin Composite Foam -- 10.6.7 Future Trends -- 10.7 Conclusions -- References -- Chapter 11 Polymer Nanocomposites Based on Talc -- 11.1 Introduction -- 11.2 Talc -- 11.2.1 General Aspects -- 11.2.2 Geology -- 11.3 Talc/Polymer Nanocomposites Compounding -- 11.4 Influence of Talc Characteristics and Concentration on Polymer Nanocomposites Properties -- 11.4.1 Particle Morphology -- 11.4.2 Particle Size -- 11.4.3 Degree of Purity -- 11.4.4 Nucleating Capability -- 11.4.5 Particle Concentration -- 11.5 Chemical Modifications of Talc -- 11.6 Influence of Talc Surface Treatments on Polymer Nanocomposites Properties -- 11.7 Industrial Applications -- 11.8 Concluding Remarks -- References -- Volume II -- Title Page -- Copyright -- Contents -- Preface -- Chapter 12 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.1 Introduction -- 12.2 Graphene and Oxide Graphene -- 12.3 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.3.1 Obtention of Polymer Nanocomposites Based on Graphene and Graphene Oxide.12.3.2 Structural Advantages of Graphene‐Polymer Nanocomposites.This comprehensive volume focuses on the chemical physics of polymer processing, emphasizing morphology, structure, and rheology. Edited by Vera V. Myasoedova, Sabu Thomas, and Hanna J. Maria, it offers a detailed exploration of the classification, synthesis, and applications of polymers enhanced by various nanomaterials. The book covers a range of topics, including the use of nanofillers, nanoparticles, and nanocellulose in polymers, with discussions on their chemical properties and processing techniques. It aims to provide researchers, academics, and industry professionals with valuable insights into advanced polymer manufacturing methods and their applications in fields such as biomedical engineering and energy storage.Generated by AI.PolymersGenerated by AINanotechnologyGenerated by AIPolymersNanotechnologyMyasoedova Vera V1838971Thomas Sabu851308Maria Hanna J1838972MiAaPQMiAaPQMiAaPQBOOK9911020092403321Chemical Physics of Polymer Nanocomposites4418079UNINA10628nam 22004693 450 991101910100332120250722080620.01-394-24153-41-394-24152-6(MiAaPQ)EBC32226758(Au-PeEL)EBL32226758(CKB)39672137700041(OCoLC)1528957309(EXLCZ)993967213770004120250722d2025 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMicrobial Nutraceuticals Products and Processes1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2025.1 online resource (490 pages)1-394-24150-X Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- About the Editors -- Preface -- Chapter 1 Microbial Nutraceuticals: An Overview -- 1.1 Introduction -- 1.1.1 Overview of Microbial Nutraceuticals -- 1.2 Microbial Production of Nutrients -- 1.2.1 Microbial Amino Acid and Peptide Production -- 1.2.2 Dietary Short-Chain Fatty Acid Production -- 1.3 Oligosaccharide Production -- 1.3.1 Prebiotic Oligosaccharide Molecule Production in Microbial Cells -- 1.3.2 Microbial Transformation and Bio-production of High-Value Rare Functional Sugars: Sources, Methods, and Safety Aspects -- 1.3.3 Microbial Production of High-Value Polyphenolics -- 1.3.4 Specialized Carbohydrate Production -- 1.3.5 Polymeric Nutraceuticals -- 1.4 Advanced Nutraceutical Products and Processes -- 1.4.1 Functional Nutraceutical Products -- 1.4.2 Specialized Nutrient Molecules -- 1.5 Safety and Regulatory Aspects -- 1.6 Alternative Sources -- Acknowledgements -- References -- Chapter 2 Microbial Cell Factories for the Production of Essential Amino Acids -- 2.1 Introduction -- 2.2 Essential Amino Acid Biosynthesis -- 2.2.1 Methionine -- 2.2.2 Valine -- 2.2.3 Tryptophan -- 2.2.4 Phenylalanine -- 2.2.5 Lysine -- 2.2.6 Leucine -- 2.2.7 Threonine -- 2.2.8 Isoleucine -- 2.2.9 Histidine -- 2.3 Fermentation Strategies -- 2.4 Perspectives and Challenges -- References -- Chapter 3 Microbial Production of Dietary Short-Chain Fatty Acids -- 3.1 Background -- 3.2 SCFA Generation and Its Producing Microbes -- 3.2.1 Acetate -- 3.2.2 Propionate -- 3.2.3 Butyrate -- 3.2.4 Valerate -- 3.2.5 Formate -- 3.3 Mechanism of Actions -- 3.4 Impact on Host Health -- 3.5 Potential of SCFAs as Therapeutics -- 3.6 Conclusions and Perspectives -- References -- Chapter 4 Microbial Sources for Bioactive Peptides Conferring Health Benefits -- 4.1 Introduction.4.2 Overview of Bioactive Peptides -- 4.3 Production and Processing of Bioactive Peptides -- 4.3.1 Enzymatic Hydrolysis -- 4.3.2 Microbial Fermentation -- 4.4 The Role of LAB Proteolytic Systems in the Liberation of Bioactive Peptides -- 4.5 Purification and Identification -- 4.6 Promising Health-Promoting Effects -- 4.6.1 Hypocholesterolemic and Hypolipidemic Effects -- 4.6.2 Antithrombotic Effect -- 4.6.3 Antihypertensive Activity -- 4.6.4 Mineral-Binding Activity -- 4.6.5 Opiate-Like Activity -- 4.7 The Impact of Processing Procedures on the Bioactivity of Peptides -- 4.8 Possible Bioactive Peptide Applications -- 4.9 One Advancement Over Linear Peptides with Cyclic Peptides -- 4.10 Computer-based Methods for Peptide Research Utilization -- 4.11 Challenges in Bioactive Peptide Development -- 4.12 Conclusions and Future Perspectives -- References -- Chapter 5 Prebiotic Oligosaccharide Production in Microbial Cells -- 5.1 Oligosaccharides as Prebiotics -- 5.2 Structural Diversity of Prebiotic Oligosaccharides and Mechanism of Action -- 5.2.1 Structures of Various Existing and Emerging Prebiotics -- 5.2.1.1 Galactooligosaccharides -- 5.2.1.2 Fructooligosaccharides -- 5.2.1.3 Chitooligosaccharides -- 5.2.1.4 Malto-andIsomaltooligosaccharides -- 5.2.1.5 Mannooligosaccharides -- 5.2.1.6 Raffinose Family Oligosaccharides -- 5.2.1.7 Xylooligosaccharides -- 5.2.2 General Mechanisms of Action of Prebiotics -- 5.3 Enzymes Involved in the Production of GOSs and FOSs -- 5.4 Microbial Systems for the Synthesis of GOSs and FOSs -- 5.4.1 Production of GOSs Using Bacterial and Fungal Systems -- 5.4.2 Production of FOSs Using Bacterial and Fungal Systems -- 5.4.2.1 FOSs Production in Bacterial Systems -- 5.4.2.2 FOSs Production in Fungal Systems -- 5.5 Novel Prebiotic Oligosaccharides -- 5.5.1 Pectic Oligosaccharides -- 5.5.2 Resistant Starch -- 5.5.3 Polydextrose.5.5.4 Polyphenols and Flavanols -- 5.5.5 Lactulose -- 5.5.6 Human Milk Oligosaccharides -- 5.5.7 Synbiotics -- 5.5.8 Mushrooms -- 5.6 Future Perspectives -- References -- Chapter 6 Bio-production of Rare Sugars, Applications, Safety, and Health Benefits -- 6.1 Introduction -- 6.2 D-Allulose -- 6.2.1 Physiological Functions and Health Benefits -- 6.2.1.1 Anti-obesityand Antidiabetic Effects -- 6.2.1.2 Anti-hyperlipidemicEffects -- 6.2.1.3 Anti-inflammatoryand Antioxidative Effects -- 6.3 D-Allose -- 6.3.1 Physiological Functions and Health Benefits -- 6.3.1.1 Anticancer and Antitumor Properties -- 6.3.1.2 Antioxidant Properties -- 6.3.1.3 Anti-inflammatoryEffects -- 6.3.1.4 Cryoprotective, Immunosuppressive, and Other Characteristics -- 6.3.1.5 Sweetener and Food Additive -- 6.3.1.6 Benefits of d-Allosein Plants -- 6.4 Trehalose -- 6.4.1 Physiological Functions and Health Benefits -- 6.4.1.1 Cryopreservation -- 6.4.1.2 Blood Sugar and Insulin Response -- 6.4.1.3 Regulation of Glucose Homeostasis and Lipid Metabolism -- 6.4.1.4 Antioxidant and Anti-inflammatoryEffects -- 6.4.1.5 Gut Microbiome Modulation -- 6.4.1.6 Dental Health and Weight Management -- 6.4.1.7 Stress Regulator in Plants -- 6.5 D-Tagatose -- 6.5.1 Physiological Functions and Health Benefits -- 6.5.1.1 Oral Health -- 6.5.1.2 Prebiotic and Systemic Health -- 6.5.1.3 Antiaging -- 6.5.1.4 D-TagatoseRestricts Plant Pathogen -- 6.6 D-Talose -- 6.7 Turanose -- 6.7.1 Physiological Functions -- 6.7.1.1 Blood Sugar Control and Weight Management -- 6.7.1.2 Anti-inflammatory -- 6.7.1.3 Prebiotic Effects -- 6.7.1.4 Gut and Dental Health -- 6.7.1.5 Pathogen Detection -- 6.7.1.6 Honey Authentication -- 6.7.1.7 Food Processing and Osmoprotection -- 6.8 Conclusion -- References -- Chapter 7 Microbial Engineering for the Production of High-value Polyphenolics -- 7.1 Introduction.7.2 Properties and Classification of Polyphenols -- 7.2.1 Phenolic Acid -- 7.2.2 Flavonoids -- 7.2.3 Non-flavonoids -- 7.3 Sources of Polyphenols -- 7.3.1 Plant as a Source for Polyphenols -- 7.3.2 Microbes as Polyphenol Source -- 7.4 Metabolic Engineering of Bacteria for Polyphenol Production -- 7.4.1 Genetic Engineering Approach for Polyphenol Production in Bacteria -- 7.4.2 Genetic Engineering of Fungi for Polyphenol Production -- 7.5 Model Organisms for Polyphenol Production -- 7.5.1 Yeast -- 7.5.2 Escherichia coli -- 7.5.3 Corynebacterium Glutamicum -- 7.6 Examples of Some Important Polyphenols Produced in E. coli -- 7.7 Conclusion and Future Directions -- References -- Chapter 8 Microbial Approaches for Lactose Transformation into High-value Rare Sugars -- 8.1 Introduction -- 8.2 Lactose-derived Rare Sugar Production Through Microbial Approach -- 8.2.1 Lactosucrose -- 8.2.2 Tagatose -- 8.2.3 Lactulose -- 8.2.4 Epilactose -- 8.3 Conclusion -- Acknowledgements -- References -- Chapter 9 Engineering Microbial Pathways for the Production of 2′-Fucosyllactose -- 9.1 Introduction -- 9.1.1 Human Milk Oligosaccharides (HMOs) -- 9.1.2 Biological Properties and Functions of 2′-FL -- 9.2 Human Milk Microbiome -- 9.2.1 Chemical Synthesis of 2′-FL -- 9.2.2 Enzymatic Synthesis of 2′-FL -- 9.2.3 Biological Production of 2′-FL Through Genetic Engineering Strategies -- 9.2.4 Engineering Gram-Negative Bacterial Host [Escherichia coli] for 2′-FL Production -- 9.2.5 Engineering Gram-Positive Bacterial Host for 2′-FL Production -- 9.2.6 Engineering Yeast for 2′-FL Production -- 9.2.7 Global Regulatory Approval, Commercialization, Market Value, and Application of 2′-FL -- 9.3 Challenges or Future Outlook -- 9.4 Conclusion and Perspectives -- Acknowledgement -- References -- Chapter 10 Microbial Production of Human Milk Oligosaccharides (HMOs) -- 10.1 Introduction.10.2 Type and Structure of HMOs -- 10.3 Different Methods for HMO Production -- 10.3.1 Chemical Synthesis -- 10.3.2 Enzymatic Synthesis (Chemoenzymatic HMO Synthesis) -- 10.3.2.1 Glycosyltransferase -- 10.3.2.2 Glycosidase -- 10.3.3 Microbial Cell Factories (Whole-Cell Reaction Method) -- 10.3.3.1 2′-Fucosyllactose -- 10.4 Strategies for Enhanced HMO Production -- 10.4.1 Designing Cell Factories for Commercial Synthesis -- 10.4.2 Modification of Metabolic Pathway -- 10.4.2.1 Exploitation of Lactose Substrate for Producing HMOs -- 10.4.2.2 Engineering of GDP-l-Fucose Pool Occurring Inside a Cell -- 10.4.2.3 Transferase Expression and Engineering -- 10.4.2.4 Exporting Product Outside Cell -- 10.4.3 Process of Fermentation and Scaling-up -- 10.4.4 Quality of the Product and Downstream Processes -- 10.5 Purification Methods -- 10.6 Global Demand and Recent Market Aspects of HMOs -- 10.6.1 HMOs' Market Segmental Analysis -- 10.6.2 HMO Market Analysis by Product -- 10.6.3 HMOs' Market Regional Analyzes None -- 10.6.4 Factors Affecting the HMOs' Market -- 10.6.5 Dairy Oligosaccharide Industry Restrictions -- 10.6.6 Competition Landscape of the Global Human Milk Oligosaccharides' (HMOs') Market -- 10.6.7 Latest Trends in the HMO Market -- 10.6.8 Highlights of Global HMOs' Market -- 10.7 Applications of HMOs -- 10.7.1 Functions of HMOs -- 10.7.2 Involvement of HMOs as if Prebiotics -- 10.7.3 Antiadhesive and Antimicrobial Characteristics of HMOs -- 10.7.4 HMO's Impact on Intestinal Epithelial Cells -- 10.7.5 HMO's Influence on Immune Cells -- 10.8 Conclusion and Future Outlook -- References -- Chapter 11 Beta (β)-glucan as Microbial Polymer with Nutraceutical Potential: Chemistry, Biosynthesis, Extraction, Identification, and Industrial Production of Bioactive Compound for Human Health -- 11.1 Introduction.11.2 Classification, Chemistry, and Biosynthesis of β-glucan.613.2Singh Sudhir Pratap1768310Upadhyay Santosh Kumar1754499MiAaPQMiAaPQMiAaPQBOOK9911019101003321Microbial Nutraceuticals4421311UNINA