04114nam 2200697Ia 450 991101897540332120200520144314.0978661026474297812802647401280264748978047032147804703214749780471464082(electronic bk.)04714640829780471224648(electronic bk.)0471224642(CKB)111087027130570(EBL)215154(OCoLC)475923550(SSID)ssj0000080481(PQKBManifestationID)11312308(PQKBTitleCode)TC0000080481(PQKBWorkID)10095356(PQKB)10033213(MiAaPQ)EBC215154(Perlego)2766286(EXLCZ)9911108702713057020011012d2001 uy 0engur|n|---|||||txtccrProblem solving in automata, languages, and complexity /Ding-Zhu Du, Ker-I KoNew York Wileyc20011 online resource (405 p.)"A Wiley-Interscience publication."9780471439608 0471439606 Includes bibliographical references (p. 387-388) and index.Contents; Preface; 1 Regular Languages; 1.1 Strings and Languages; 1.2 Regular Languages and Regular Expressions; 1.3 Graph Representations for Regular Expressions; 2 Finite Automata; 2.1 Deterministic Finite Automata; 2.2 Examples of Deterministic Finite Automata; 2.3 Nondeterministic Finite Automata; 2.4 Converting an NFA to a DFA; 2.5 Finite Automata and Regular Expressions; 2.6 Closure Properties of Regular Languages; 2.7 Minimum Deterministic Finite Automata; 2.8 Pumping Lemmas; 3 Context-Free Languages; 3.1 Context-Free Grammars; 3.2 More Examples of Context-Free Grammars3.3 Parsing and Ambiguity3.4 Pushdown Automata; 3.5 Pushdown Automata and Context-Free Grammars; 3.6 Pumping Lemmas for Context-Free Languages; 4 Turing Machines; 4.1 One-Tape Turing Machines; 4.2 Examples of Turing Machines; 4.3 Multi-Tape Turing Machines; 4.4 Church-Turing Thesis; 4.5 Unrestricted Grammars; 4.6 Primitive Recursive Functions; 4.7 Pairing Functions and Gödel Numberings; 4.8 Partial Recursive Functions; 5 Computability Theory; 5.1 Universal Turing Machines; 5.2 R. E. Sets and Recursive Sets; 5.3 Diagonalization; 5.4 Reducibility; 5.5 Recursion Theorem; 5.6 Undecidable Problems6 Computational Complexity6.1 Asymptotic Growth Rate; 6.2 Time and Space Complexity; 6.3 Hierarchy Theorems; 6.4 Nondeterministic Turing Machines; 6.5 Context-Sensitive Languages; 7 NP-Completeness; 7.1 NP; 7.2 Polynomial-Time Reducibility; 7.3 Cook's Theorem; 7.4 More NP-Complete Problems; 7.5 NP-Complete Optimization Problems; References; Index; A; B; C; D; E; F; G; H; I; K; L; M; N; O; P; Q; R; S; T; U; V; W; X; ZAutomata and natural language theory are topics lying at the heart of computer science. Both are linked to computational complexity and together, these disciplines help define the parameters of what constitutes a computer, the structure of programs, which problems are solvable by computers, and a range of other crucial aspects of the practice of computer science. In this important volume, two respected authors/editors in the field offer accessible, practice-oriented coverage of these issues with an emphasis on refining core problem solving skills.Machine theoryFormal languagesComputational complexityMachine theory.Formal languages.Computational complexity.511.3Du Dingzhu61540Ko Ker-I772066Wiley Online Library (Servicio en línea)MiAaPQMiAaPQMiAaPQBOOK9911018975403321Problem solving in automata, languages, and complexity4416882UNINA