03780nam 2200697 450 991045962740332120200520144314.00-8131-8854-70-8131-9108-40-8131-4874-X(CKB)3710000000333917(EBL)1915042(SSID)ssj0001402387(PQKBManifestationID)11833621(PQKBTitleCode)TC0001402387(PQKBWorkID)11360338(PQKB)10077318(MiAaPQ)EBC1915042(OCoLC)605213214(MdBmJHUP)muse43821(Au-PeEL)EBL1915042(CaPaEBR)ebr11011670(CaONFJC)MIL690800(OCoLC)900344418(EXLCZ)99371000000033391720150204h20041997 uy 0engur|n|---|||||txtccrLife on the Ohio /Captain James CoomerPaperback edition.Lexington, Kentucky :The University Press of Kentucky,2004.©19971 online resource (202 p.)Ohio River Valley SeriesMap of Ohio River Valley on endpapers.1-322-59518-6 0-8131-2000-4 Cover; Title; Copyright; Contents; List of Illustrations; Series Foreword; Foreword; Preface: The Ohio and Me; Harbor Work, 1948-1955; I Begin; Hands On; Solo; Roots; The Wrong Stuff; Ever Get That Run-Down Feeling?; A Sticky Affair; Last of the Muskrateers; Daddy Cool and the Kid; Biff! Bam! Pow!; Moving On; Towboating, 1955-1980; A First Night; Alphonse and Gaston; Coffee, the Real Lubricant; Pride Goeth Before a Bellyache; Little Cat Feet?; Ninety-five Percent Boredom, Five Percent Pure Terror; That's Showbiz, Jack; Night Lights; Burial at Sea; Thirty On, Thirty Off; Ghosts on the RiverWho Could Ask for More?Unscrambled Yegg; Christmas on the River; Hang It Up, Pappy; Hoist by My Own Hippie; But Why, Man?; Educating Jerry; Jerry Locks Out; The Luck of the Draw; Days; Time Out, 1967; Happy Landings?; In the End Is the Beginning; A Crusoe Adventure; Manny's Place; A Companion Arrives; Last Lapse; New Orleans Harbor, 1973-1974; Vulcan, a Little Tug That Could and Did; Bab-EI on the Old Miss; Old China Hand-Out; Ships That Pass in the Night; The Odd Couple; Drown and Out in New Orleans; Epilogue; Glossary; A; B; C; D; E; F; G; H; K; L; M; N; O; P; R; S; T; U; V; WWhen young James Coomer was offered a job as deckhand on the tugboat Pat Murphy at a dollar an hour, he took his first smell of diesel fuel and knew he was hooked. Life on the Ohio puts the reader in the pilot's seat as Coomer wrestles with runaway barges, navigates through ice and fog, pacifies angry crew members, and contends with the loneliness of working a thirty-day stretch. A modern counterpart to Twain's account of life as a steamboat pilot, Life on the Ohio depicts the working river as it is today with its immense towboats, gigantic locks and dams, and millions of tons of cargo. CoomeOhio River Valley series.River steamersOhio RiverAnecdotesRiver lifeOhio RiverAnecdotesOhio RiverSocial life and customsAnecdotesOhio RiverDescription and travelAnecdotesOhio RiverBiographyAnecdotesElectronic books.River steamersRiver life977/.033Coomer James1928-1049697MiAaPQMiAaPQMiAaPQBOOK9910459627403321Life on the Ohio2478947UNINA02337nam 2200397Ia 450 99639238590331620221108074645.0(CKB)1000000000669648(EEBO)2240946484(OCoLC)12562364(EXLCZ)99100000000066964819850916d1689 uy |engurbn||||a|bb|Astronomia anglicana[electronic resource] containing an absolute and entire piece of astronomy : wherein is succinctly handled the trigonometrical part, generally propounded, and particularly apply'd in all questions tending to diurnal motion, especially respecting the main doctrine of the second motions of the luminaries, and the other planets, together with their affections, as eclipses, &c. : composed according to the best observations, and grounded upon the most rational hypothesis yet constituted : with new, facile, and most exact tables, whereby the planets places may speedily by attained both in longitude and latitude for any time past, present, or to come and precepts for calculating eclipses, yet far more easie, expedite and perspicuous than any heretofore extant : fitted to the meridian of the most famous and ancient metropolis London, and chiefly intended for the use of our English nation, and especially mariners /by Nicholas Greenwood ..London Printed by John Harefinch, for William Hensman ...1689[8], 260 ill"Doktrina sphairika: or, The doctrine of the sphere", "Doktrina theorika; or, A new theory of the cÅlestial motions", and "Astronomia anglicana" each have separate dated title page on leaf B1r, H1r, and O2r, respectively; pagination and register are continuous.First two words of B1r and H1r title page transliterated from Greek.Reproduction of original in the Folger Shakespeare Library.eebo-0021AstronomyEarly works to 1800SphereAstronomyTablesAstronomySphere.AstronomyGreenwood Nicholasfl. 1689.1005545EAAEAAm/cWaOLNBOOK996392385903316Astronomia anglicana2312104UNISA11777nam 2200673Ia 450 991101883880332120200520144314.01-118-61462-31-299-47574-41-118-61463-110.1002/9781118614563(CKB)2550000001020360(EBL)1169506(SSID)ssj0000860566(PQKBManifestationID)11503668(PQKBTitleCode)TC0000860566(PQKBWorkID)10897915(PQKB)10483103(MiAaPQ)EBC1169506(CaBNVSL)mat06515232(IDAMS)0b00006481d64681(IEEE)6515232(OCoLC)842929854(PPN)264535677(EXLCZ)99255000000102036020130211d2013 uy 0engur|n|---|||||txtccrNumerical analysis with applications in mechanics and engineering /Petre Teodorescu, Nicolae-Doru Stanescu, Nicolae PandreaHoboken, N.J. John Wiley & Sons Inc.20131 online resource (647 p.)Description based upon print version of record.1-118-61456-9 1-118-07750-4 Includes bibliographical references.Preface xi -- 1 Errors in Numerical Analysis 1 -- 1.1 Enter Data Errors, 1 -- 1.2 Approximation Errors, 2 -- 1.3 Round-Off Errors, 3 -- 1.4 Propagation of Errors, 3 -- 1.4.1 Addition, 3 -- 1.4.2 Multiplication, 5 -- 1.4.3 Inversion of a Number, 7 -- 1.4.4 Division of Two Numbers, 7 -- 1.4.5 Raising to a Negative Entire Power, 7 -- 1.4.6 Taking the Root of pth Order, 7 -- 1.4.7 Subtraction, 8 -- 1.4.8 Computation of Functions, 8 -- 1.5 Applications, 8 -- Further Reading, 14 -- 2 Solution of Equations 17 -- 2.1 The Bipartition (Bisection) Method, 17 -- 2.2 The Chord (Secant) Method, 20 -- 2.3 The Tangent Method (Newton), 26 -- 2.4 The Contraction Method, 37 -- 2.5 The Newton-Kantorovich Method, 42 -- 2.6 Numerical Examples, 46 -- 2.7 Applications, 49 -- Further Reading, 52 -- 3 Solution of Algebraic Equations 55 -- 3.1 Determination of Limits of the Roots of Polynomials, 55 -- 3.2 Separation of Roots, 60 -- 3.3 Lagrange's Method, 69 -- 3.4 The Lobachevski-Graeffe Method, 72 -- 3.4.1 The Case of Distinct Real Roots, 72 -- 3.4.2 The Case of a Pair of Complex Conjugate Roots, 74 -- 3.4.3 The Case of Two Pairs of Complex Conjugate Roots, 75 -- 3.5 The Bernoulli Method, 76 -- 3.6 The Bierge-Vi`ete Method, 79 -- 3.7 Lin Methods, 79 -- 3.8 Numerical Examples, 82 -- 3.9 Applications, 94 -- Further Reading, 109 -- 4 Linear Algebra 111 -- 4.1 Calculation of Determinants, 111 -- 4.1.1 Use of Definition, 111 -- 4.1.2 Use of Equivalent Matrices, 112 -- 4.2 Calculation of the Rank, 113 -- 4.3 Norm of a Matrix, 114 -- 4.4 Inversion of Matrices, 123 -- 4.4.1 Direct Inversion, 123 -- 4.4.2 The Gauss-Jordan Method, 124 -- 4.4.3 The Determination of the Inverse Matrix by its Partition, 125 -- 4.4.4 Schur's Method of Inversion of Matrices, 127 -- 4.4.5 The Iterative Method (Schulz), 128 -- 4.4.6 Inversion by Means of the Characteristic Polynomial, 131 -- 4.4.7 The Frame-Fadeev Method, 131 -- 4.5 Solution of Linear Algebraic Systems of Equations, 132 -- 4.5.1 Cramer's Rule, 132 -- 4.5.2 Gauss's Method, 133.4.5.3 The Gauss-Jordan Method, 134 -- 4.5.4 The LU Factorization, 135 -- 4.5.5 The Schur Method of Solving Systems of Linear Equations, 137 -- 4.5.6 The Iteration Method (Jacobi), 142 -- 4.5.7 The Gauss-Seidel Method, 147 -- 4.5.8 The Relaxation Method, 149 -- 4.5.9 The Monte Carlo Method, 150 -- 4.5.10 Infinite Systems of Linear Equations, 152 -- 4.6 Determination of Eigenvalues and Eigenvectors, 153 -- 4.6.1 Introduction, 153 -- 4.6.2 Krylov's Method, 155 -- 4.6.3 Danilevski's Method, 157 -- 4.6.4 The Direct Power Method, 160 -- 4.6.5 The Inverse Power Method, 165 -- 4.6.6 The Displacement Method, 166 -- 4.6.7 Leverrier's Method, 166 -- 4.6.8 The L-R (Left-Right) Method, 166 -- 4.6.9 The Rotation Method, 168 -- 4.7 QR Decomposition, 169 -- 4.8 The Singular Value Decomposition (SVD), 172 -- 4.9 Use of the Least Squares Method in Solving the Linear Overdetermined Systems, 174 -- 4.10 The Pseudo-Inverse of a Matrix, 177 -- 4.11 Solving of the Underdetermined Linear Systems, 178 -- 4.12 Numerical Examples, 178 -- 4.13 Applications, 211 -- Further Reading, 269 -- 5 Solution of Systems of Nonlinear Equations 273 -- 5.1 The Iteration Method (Jacobi), 273 -- 5.2 Newton's Method, 275 -- 5.3 The Modified Newton's Method, 276 -- 5.4 The Newton-Raphson Method, 277 -- 5.5 The Gradient Method, 277 -- 5.6 The Method of Entire Series, 280 -- 5.7 Numerical Example, 281 -- 5.8 Applications, 287 -- Further Reading, 304 -- 6 Interpolation and Approximation of Functions 307 -- 6.1 Lagrange's Interpolation Polynomial, 307 -- 6.2 Taylor Polynomials, 311 -- 6.3 Finite Differences: Generalized Power, 312 -- 6.4 Newton's Interpolation Polynomials, 317 -- 6.5 Central Differences: Gauss's Formulae, Stirling's Formula, Bessel's Formula, Everett's Formulae, 322 -- 6.6 Divided Differences, 327 -- 6.7 Newton-Type Formula with Divided Differences, 331 -- 6.8 Inverse Interpolation, 332 -- 6.9 Determination of the Roots of an Equation by Inverse Interpolation, 333 -- 6.10 Interpolation by Spline Functions, 335.6.11 Hermite's Interpolation, 339 -- 6.12 Chebyshev's Polynomials, 340 -- 6.13 Mini-Max Approximation of Functions, 344 -- 6.14 Almost Mini-Max Approximation of Functions, 345 -- 6.15 Approximation of Functions by Trigonometric Functions (Fourier), 346 -- 6.16 Approximation of Functions by the Least Squares, 352 -- 6.17 Other Methods of Interpolation, 354 -- 6.17.1 Interpolation with Rational Functions, 354 -- 6.17.2 The Method of Least Squares with Rational Functions, 355 -- 6.17.3 Interpolation with Exponentials, 355 -- 6.18 Numerical Examples, 356 -- 6.19 Applications, 363 -- Further Reading, 374 -- 7 Numerical Differentiation and Integration 377 -- 7.1 Introduction, 377 -- 7.2 Numerical Differentiation by Means of an Expansion into a Taylor Series, 377 -- 7.3 Numerical Differentiation by Means of Interpolation Polynomials, 380 -- 7.4 Introduction to Numerical Integration, 382 -- 7.5 The Newton-Cˆotes Quadrature Formulae, 384 -- 7.6 The Trapezoid Formula, 386 -- 7.7 Simpson's Formula, 389 -- 7.8 Euler's and Gregory's Formulae, 393 -- 7.9 Romberg's Formula, 396 -- 7.10 Chebyshev's Quadrature Formulae, 398 -- 7.11 Legendre's Polynomials, 400 -- 7.12 Gauss's Quadrature Formulae, 405 -- 7.13 Orthogonal Polynomials, 406 -- 7.13.1 Legendre Polynomials, 407 -- 7.13.2 Chebyshev Polynomials, 407 -- 7.13.3 Jacobi Polynomials, 408 -- 7.13.4 Hermite Polynomials, 408 -- 7.13.5 Laguerre Polynomials, 409 -- 7.13.6 General Properties of the Orthogonal Polynomials, 410 -- 7.14 Quadrature Formulae of Gauss Type Obtained by Orthogonal Polynomials, 412 -- 7.14.1 Gauss-Jacobi Quadrature Formulae, 413 -- 7.14.2 Gauss-Hermite Quadrature Formulae, 414 -- 7.14.3 Gauss-Laguerre Quadrature Formulae, 415 -- 7.15 Other Quadrature Formulae, 417 -- 7.15.1 Gauss Formulae with Imposed Points, 417 -- 7.15.2 Gauss Formulae in which the Derivatives of the Function Also Appear, 418 -- 7.16 Calculation of Improper Integrals, 420 -- 7.17 Kantorovich's Method, 422 -- 7.18 The Monte Carlo Method for Calculation of Definite Integrals, 423.7.18.1 The One-Dimensional Case, 423 -- 7.18.2 The Multidimensional Case, 425 -- 7.19 Numerical Examples, 427 -- 7.20 Applications, 435 -- Further Reading, 447 -- 8 Integration of Ordinary Differential Equations and of Systems of Ordinary Differential Equations 451 -- 8.1 State of the Problem, 451 -- 8.2 Euler's Method, 454 -- 8.3 Taylor Method, 457 -- 8.4 The Runge-Kutta Methods, 458 -- 8.5 Multistep Methods, 462 -- 8.6 Adams's Method, 463 -- 8.7 The Adams-Bashforth Methods, 465 -- 8.8 The Adams-Moulton Methods, 467 -- 8.9 Predictor-Corrector Methods, 469 -- 8.9.1 Euler's Predictor-Corrector Method, 469 -- 8.9.2 Adams's Predictor-Corrector Methods, 469 -- 8.9.3 Milne's Fourth-Order Predictor-Corrector Method, 470 -- 8.9.4 Hamming's Predictor-Corrector Method, 470 -- 8.10 The Linear Equivalence Method (LEM), 471 -- 8.11 Considerations about the Errors, 473 -- 8.12 Numerical Example, 474 -- 8.13 Applications, 480 -- Further Reading, 525 -- 9 Integration of Partial Differential Equations and of Systems of Partial Differential Equations 529 -- 9.1 Introduction, 529 -- 9.2 Partial Differential Equations of First Order, 529 -- 9.2.1 Numerical Integration by Means of Explicit Schemata, 531 -- 9.2.2 Numerical Integration by Means of Implicit Schemata, 533 -- 9.3 Partial Differential Equations of Second Order, 534 -- 9.4 Partial Differential Equations of Second Order of Elliptic Type, 534 -- 9.5 Partial Differential Equations of Second Order of Parabolic Type, 538 -- 9.6 Partial Differential Equations of Second Order of Hyperbolic Type, 543 -- 9.7 Point Matching Method, 546 -- 9.8 Variational Methods, 547 -- 9.8.1 Ritz's Method, 549 -- 9.8.2 Galerkin's Method, 551 -- 9.8.3 Method of the Least Squares, 553 -- 9.9 Numerical Examples, 554 -- 9.10 Applications, 562 -- Further Reading, 575 -- 10 Optimizations 577 -- 10.1 Introduction, 577 -- 10.2 Minimization Along a Direction, 578 -- 10.2.1 Localization of the Minimum, 579 -- 10.2.2 Determination of the Minimum, 580 -- 10.3 Conjugate Directions, 583.10.4 Powell's Algorithm, 585 -- 10.5 Methods of Gradient Type, 585 -- 10.5.1 The Gradient Method, 585 -- 10.5.2 The Conjugate Gradient Method, 587 -- 10.5.3 Solution of Systems of Linear Equations by Means of Methods of Gradient Type, 589 -- 10.6 Methods of Newton Type, 590 -- 10.6.1 Newton's Method, 590 -- 10.6.2 Quasi-Newton Method, 592 -- 10.7 Linear Programming: The Simplex Algorithm, 593 -- 10.7.1 Introduction, 593 -- 10.7.2 Formulation of the Problem of Linear Programming, 595 -- 10.7.3 Geometrical Interpretation, 597 -- 10.7.4 The Primal Simplex Algorithm, 597 -- 10.7.5 The Dual Simplex Algorithm, 599 -- 10.8 Convex Programming, 600 -- 10.9 Numerical Methods for Problems of Convex Programming, 602 -- 10.9.1 Method of Conditional Gradient, 602 -- 10.9.2 Method of Gradient's Projection, 602 -- 10.9.3 Method of Possible Directions, 603 -- 10.9.4 Method of Penalizing Functions, 603 -- 10.10 Quadratic Programming, 603 -- 10.11 Dynamic Programming, 605 -- 10.12 Pontryagin's Principle of Maximum, 607 -- 10.13 Problems of Extremum, 609 -- 10.14 Numerical Examples, 611 -- 10.15 Applications, 623 -- Further Reading, 626 -- Index 629. A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret resuNumerical analysisEngineering mathematicsNumerical analysis.Engineering mathematics.620.001/518Teodorescu P. P932126Stanescu Nicolae-Doru1697831Pandrea Nicolae1663289MiAaPQMiAaPQMiAaPQBOOK9911018838803321Numerical analysis with applications in mechanics and engineering4078844UNINA01453nam0 22003011i 450 UON0041990720231205104817.61620130306d1954 |0itac50 bafreDE|||| |||||Réalité sociale et idéologie religieuse dans les romans de Thoman MannLes Buddenbrook, La Montagne magique, Le Docteur FaustusPierre-Paul SagaveParis : Les Belles Lettres1954IV168 P. ; 25 cmSul front.: Ouvrage publié avec le concours du Centre National de la Recherche Scientifique.001UON001325692001 Publications de la Faculté des Lettres de l'Université de Strasbourg124Letteratura tedescaSec. 20.StudiUONC064833FIMANN THOMASUONC040204FIFRParisUONL002984830.09Letteratura tedesca. Storia, descrizione, studi critici21SAGAVEPierre-PaulUONV170062694796Les Belles LettresUONV245913650ITSOL20251003RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00419907SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI TED 25 II MAN SAG SI ST 2822 5 BuonoRéalité sociale et idéologie religieuse dans les romans de Thoman Mann1339648UNIOR