01110nam0 22002773i 450 VAN010756820230731091904.90620170206d1958 |0itac50 baitaIT|||| |||||ˆIl ‰primo e l'ultimodel generale Adolf GallandMilanoLonganesi[1958]610 p., [18] carte di tavoleill.19 cmBiblioteca LauriaIT-IT-CE0105 CONSBL.900M.1021/SLP001VAN00142962001 ˆIl ‰cammeo210 MilanoLonganesi.100Guerra mondiale 1939-1945VANC032904SGMilanoVANL000284GallandAdolfVANV082985470592Longanesi <editore>VANV108187650ITSOL20240503RICABIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZAIT-CE0105VAN00VAN0107568BIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA00CONS BL.900M.1021 00BL 2107 SLP 20170206 Biblioteca LauriaPrimo e l'ultimo237036UNICAMPANIA05602nam 2200733Ia 450 991101878810332120251116170305.097866139046149783527646548352764654X978128359216112835921699783527646579352764657497835276465623527646566(CKB)2560000000093291(EBL)1015630(OCoLC)813987909(SSID)ssj0000739379(PQKBManifestationID)11458062(PQKBTitleCode)TC0000739379(PQKBWorkID)10686956(PQKB)11222501(MiAaPQ)EBC1015630(PPN)164815252(Perlego)1011880(EXLCZ)99256000000009329120120922d2012 uy 0engur|n|---|||||txtccrStatistical methods in radiation physics /James E. Turner, Darryl J. Downing and James S. BogardWeinheim Wiley-VCH Verlagc20121 online resource (468 p.)Description based upon print version of record.9783527411078 3527411070 Includes bibliographical references and index.Statistical Methods in Radiation Physics; Contents; Preface; 1 The Statistical Nature of Radiation, Emission, and Interaction; 1.1 Introduction and Scope; 1.2 Classical and Modern Physics - Determinism and Probabilities; 1.3 Semiclassical Atomic Theory; 1.4 Quantum Mechanics and the Uncertainty Principle; 1.5 Quantum Mechanics and Radioactive Decay; Problems; 2 Radioactive Decay; 2.1 Scope of Chapter; 2.2 Radioactive Disintegration - Exponential Decay; 2.3 Activity and Number of Atoms; 2.4 Survival and Decay Probabilities of Atoms; 2.5 Number of Disintegrations - The Binomial Distribution2.6 CritiqueProblems; 3 Sample Space, Events, and Probability; 3.1 Sample Space; 3.2 Events; 3.3 Random Variables; 3.4 Probability of an Event; 3.5 Conditional and Independent Events; Problems; 4 Probability Distributions and Transformations; 4.1 Probability Distributions; 4.2 Expected Value; 4.3 Variance; 4.4 Joint Distributions; 4.5 Covariance; 4.6 Chebyshev's Inequality; 4.7 Transformations of Random Variables; 4.8 Bayes' Theorem; Problems; 5 Discrete Distributions; 5.1 Introduction; 5.2 Discrete Uniform Distribution; 5.3 Bernoulli Distribution; 5.4 Binomial Distribution5.5 Poisson Distribution5.6 Hypergeometric Distribution; 5.7 Geometric Distribution; 5.8 Negative Binomial Distribution; Problems; 6 Continuous Distributions; 6.1 Introduction; 6.2 Continuous Uniform Distribution; 6.3 Normal Distribution; 6.4 Central Limit Theorem; 6.5 Normal Approximation to the Binomial Distribution; 6.6 Gamma Distribution; 6.7 Exponential Distribution; 6.8 Chi-Square Distribution; 6.9 Student's t-Distribution; 6.10 F Distribution; 6.11 Lognormal Distribution; 6.12 Beta Distribution; Problems; 7 Parameter and Interval Estimation; 7.1 Introduction7.2 Random and Systematic Errors7.3 Terminology and Notation; 7.4 Estimator Properties; 7.5 Interval Estimation of Parameters; 7.5.1 Interval Estimation for Population Mean; 7.5.2 Interval Estimation for the Proportion of Population; 7.5.3 Estimated Error; 7.5.4 Interval Estimation for Poisson Rate Parameter; 7.6 Parameter Differences for Two Populations; 7.6.1 Difference in Means; 7.6.1.1 Case 1: σ2x and σ2x Known; 7.6.1.2 Case 2: σ2x and σ2y Unknown, but Equal (=σ2); 7.6.1.3 Case 3: σ2x and σ2y Unknown and Unequal; 7.6.2 Difference in Proportions; 7.7 Interval Estimation for a Variance7.8 Estimating the Ratio of Two Variances7.9 Maximum Likelihood Estimation; 7.10 Method of Moments; Problems; 8 Propagation of Error; 8.1 Introduction; 8.2 Error Propagation; 8.3 Error Propagation Formulas; 8.3.1 Sums and Differences; 8.3.2 Products and Powers; 8.3.3 Exponentials; 8.3.4 Variance of the Mean; 8.4 A Comparison of Linear and Exact Treatments; 8.5 Delta Theorem; Problems; 9 Measuring Radioactivity; 9.1 Introduction; 9.2 Normal Approximation to the Poisson Distribution; 9.3 Assessment of Sample Activity by Counting; 9.4 Assessment of Uncertainty in Activity9.5 Optimum Partitioning of Counting TimesThis statistics textbook, with particular emphasis on radiation protection and dosimetry, deals with statistical solutions to problems inherent in health physics measurements and decision making.The authors begin with a description of our current understanding of the statistical nature of physical processes at the atomic level, including radioactive decay and interactions of radiation with matter. Examples are taken from problems encountered in health physics, and the material is presented such that health physicists and most other nuclear professionals will more readily understand the appIonizing radiationStatistical methodsRadiationStatistical methodsIonizing radiationStatistical methods.RadiationStatistical methods.539.2015195610.153Turner James E6062Downing D. J1866400Bogard James S1841663MiAaPQMiAaPQMiAaPQBOOK9911018788103321Statistical methods in radiation physics4473797UNINA