01213nam0 22002891i 450 UON0047651220231205105230.426978-06-911559-7-520170512f2010 |0itac50 baengUS|||| |||||Philosophy of languageScott SoamesPrincetonPrinceton University Press2010VIII, 189 p.22 cm.Filosofia del linguaggioUONC024812FIUSPrincetonUONL000074401Linguaggio. Filosofia e teoria21SOAMESScottUONV236453739508Princeton University PressUONV245813650ITSOL20250606RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00476512SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI FS 2.0 1228 SI 23609 5 1228 BuonoSIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI2017288 1J 20170512Inventariato su ordine Philosophy of language1539171UNIOR02884nam 22006255 450 991101865090332120250806172318.09789819655151(electronic bk.)978981965514410.1007/978-981-96-5515-1(MiAaPQ)EBC32253834(Au-PeEL)EBL32253834(CKB)40093120100041(OCoLC)1530783732(DE-He213)978-981-96-5515-1(EXLCZ)994009312010004120250806d2025 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierTwo-Dimensional Constant and Product Polynomial Systems /by Albert C. J. Luo1st ed. 2025.Singapore :Springer Nature Singapore :Imprint: Springer,2025.1 online resource (144 pages)Print version: Luo, Albert C. J. Two-Dimensional Constant and Product Polynomial Systems Singapore : Springer,c2025 9789819655144 Constant and Product Polynomial Systems -- Proof of Theorem 1.1 -- Singular flows bifurcaions and networks.This book is a monograph about 1-dimensional flow arrays and bifurcations in constant and product polynomial systems. The 1-dimensional flows and the corresponding bifurcation dynamics are discussed. The singular hyperbolic and hyperbolic-secant flows are presented, and the singular hyperbolic-to-hyperbolic-secant flows are discussed. The singular inflection source, sink and upper, and lower-saddle flows are presented. The corresponding appearing and switching bifurcations are presented for the hyperbolic and hyperbolic-secant networks, and singular flows networks. The corresponding theorem is presented, and the proof of theorem is given. Based on the singular flows, the corresponding hyperbolic and hyperbolic-secant flows are illustrated for a better understanding of the dynamics of constant and product polynomial systems.System theoryAlgebraic fieldsPolynomialsDynamicsDifferential equationsComplex SystemsField Theory and PolynomialsDynamical SystemsDifferential EquationsSystem theory.Algebraic fields.Polynomials.Dynamics.Differential equations.Complex Systems.Field Theory and Polynomials.Dynamical Systems.Differential Equations.003Luo Albert C. J720985MiAaPQMiAaPQMiAaPQ9911018650903321Two-Dimensional Constant and Product Polynomial Systems4415134UNINA