07205nam 22008053 450 991100916710332120250523181839.0978075032275107503227569780750322768075032276410.1088/978-0-7503-2276-8(CKB)5590000000629850(CaBNVSL)thg00082705(OCoLC)1280155254(IOP)9780750322768(MiAaPQ)EBC31253203(Au-PeEL)EBL31253203(EXLCZ)99559000000062985020250523d2021 uy 0engurcn||||m|||ardacontentisbdmediardacarrierMolecular theory of electric double layers /Dimiter N. Petsev, Frank van Swol and Laura J.D. Frink1st ed.Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) :IOP Publishing,[2021]1 online resource (various pagings) illustrations (some color)IOP ebooks"Version: 202110"--Title page verso.9780750322775 0750322772 9780750322744 0750322748 Includes bibliographical references.1. Introduction : a historical overview -- 1.1. Charges and fields -- 1.2. Electrostatics of systems with distributed charges -- 1.3. The concept of electric double layerpart I. Theory. 2. The origin of charge at interfaces involving electrolyte solutions -- 2.1. Effects of the surface chemical reactions and the charge regulation model -- 2.2. Effects due to physical adsorption -- 2.3. Structural effects on the ionic and solvent concentration at the interface3. Continuum models of the electric double layers -- 3.1. The Poisson-Boltzmann equation -- 3.2. Electric double layer models based on the Poisson-Boltzmann equation : exact and approximate solutions -- 3.3. Beyond the Boltzmann distribution : the semiconductor-electrolyte interface -- 3.4. Electrokinetic phenomena -- 3.5. Deficiencies of the continuum approach4. Integral equation theory -- 4.1. Background -- 4.2. Percus-Yevick closure -- 4.3. The hypernetted-chain closure -- 4.4. The mean spherical approximation (MSA) -- 4.5. Hard sphere mixtures -- 4.6. The Ornstein-Zernike equations approach to studying electric double layers5. Perturbation and mean field theory -- 5.1. Background -- 5.2. Virial expansions -- 5.3. Zwanzig's perturbation theory -- 5.4. Mean field theory6. Density functional theory -- 6.1. Density functional theory for electronic structure -- 6.2. Density functional theory for classical fluids7. Classical-DFT for electrolyte interfaces -- 7.1. Molecular models of electrolytes -- 7.2. Classical-DFT for point-charge electrolytes -- 7.3. Classical-DFT for finite-size electrolytes -- 7.4. Classical-DFT with correlations -- 7.5. Classical-DFT with cohesive interactions -- 7.6. Classical-DFT for systems with active surfaces -- 7.7. Classical-DFT for water -- 7.8. Classical-DFT for electrokinetic systemspart II. Structure of a single electric double layer : effects due to surface charge regulation and non-Coulombic interactions. 8. Molecular properties of a single electric double layer -- 8.1. Classical density functional theory model of a single flat electric double layer -- 8.2. Solution structure in an electric double layer with surface charge regulation -- 8.3. Conclusions9. Ionic solvation effects and solvent-solvent interactions -- 9.1. Solvation of the potential determining ions -- 9.2. Solvation of the positive non-potential determining ions -- 9.3. Solvation of the negative non-potential determining ions -- 9.4. Effect of the solvent-solvent fluid interactions -- 9.5. Conclusions10. Surface solvation and non-Coulombic ion-surface interactions -- 10.1. Solvent-surface interactions. Solvophilic and solvophobic surfaces -- 10.2. Effect of the non-Coulombic interactions between the potential determining ions and the charged wall -- 10.3. Effect of the non-Coulombic positive ions--surface interactions -- 10.4. Effect of the non-Coulombic negative ions--surface interactions -- 10.5. Conclusions11. The potential distribution in the electric double layer and its relationship to the fluid charge -- 11.1. The Poisson equation for structured electrolyte solutions -- 11.2. Molecular interpretation of the Helmholtz planes, the Stern-Grahame layer, and the electrokinetic shear plane -- 11.3. Conclusions12. Electric double layers containing multivalent ions -- 12.1. Multivalent ion density profiles in the electric double layer -- 12.2. Effect of the non-potential-determining ions valency on the density profiles of the potential determining ions in the electric double layer -- 12.3. Non-Coulombic surface interactions, charge and potential distributions in the Stern-Grahame layer and beyond -- 12.4. Conclusions13. Ionic size effects -- 13.1. Ionic size variations and solution density -- 13.2. Conclusionspart III. Numerical methods. 14. Molecular simulation : methods -- 14.1. Background -- 14.2. Molecular dynamics methods -- 14.3. The potential distribution theorem (PDT) -- 14.4. Simulation routes to the grand potential15. Molecular simulation : applications -- 15.1. Background -- 15.2. One-component plasma -- 15.3. Molten salts -- 15.4. Bulk electrolytes16. Numerical methods for classical-DFT -- 16.1. Solution methods -- 16.2. Algorithms for constructing phase diagrams.The electrical double layer describes charge and potential distributions that form at the interface between electrolyte solutions and the surface of an object, and they play a fundamental role in chemical and electrochemical behaviour. Colloid science, electrochemistry, material science, and biology are a few examples where such interfaces play a crucial role. The focus of this book is on the application of modern liquid state theories to the properties of electric double layers, where it demonstrates the ability of statistical mechanical approaches, such as the classical density functional theory, to provide insights and details that will enable a better and more quantitative understanding of electric double layers. The book will be essential reading for advanced students and researchers in interfacial science and its numerous applications.IOP ebooks.Electric double layerSurface chemistryElectric double layer.Surface chemistry.541.37Petsev D. N(Dimiter Nikolov),1962-1837019Swol Frank vanFrink Laura J. D.Institute of Physics (Great Britain),MiAaPQMiAaPQMiAaPQBOOK9911009167103321Molecular theory of electric double layers4415315UNINA