04204nam 22005773 450 991100727520332120240124202332.09781523161935152316193097807844851250784485127(MiAaPQ)EBC30808813(Au-PeEL)EBL30808813(CKB)28544057800041(Exl-AI)30808813(EXLCZ)992854405780004120231025d2023 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierComputational Fluid Dynamics Modeling in Water Infrastructure Best Practices1st ed.Reston :American Society of Civil Engineers,2023.©2023.1 online resource (71 pages)Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Contributors -- Acknowledgments -- Chapter 1 : Introduction -- References -- Chapter 2 : Domain Geometry and Process Models -- 2.1   Problem Formulation -- 2.2   Case Complexity -- 2.3   Adequacy of Two-Dimensional versus Three-Dimensional Modeling Approaches -- 2.4   Consideration of Coordinate Systems -- 2.5   Computational Fluid Dynamics Software Selection -- 2.6   Timescales -- 2.7   Domain Geometry -- 2.8   Scale of the Problem -- 2.9   Process Models -- 2.9.1   Physical Process Models -- 2.9.2   Biological Process Models -- 2.9.3   Chemical Process Models -- References -- Chapter 3 : Meshing -- 3.1   Mesh Types -- 3.2   Characteristics of a Good-Quality Mesh -- 3.3   Mesh Size -- 3.4   Meshing Strategy -- References -- Chapter 4 : Initial and Boundary Conditions -- 4.1   General Considerations -- 4.2   Defining Turbulence Closure Conditions at Boundaries -- 4.3   Cell Zone Conditions -- References -- Chapter 5 : Numerical Methods -- 5.1   Discretization of Equations -- 5.2   Coupled versus Segregated Solver -- 5.3   Controlling the Rate of Convergence and Stability -- 5.3.1   Underrelaxation Factors -- 5.3.2   Solution Initialization -- 5.3.3   Time-Dependent Solutions -- 5.4   Choice of Numerical Scheme -- References -- Chapter 6 : Choosing Turbulence Schemes -- 6.1   Turbulent-Resolving Strategies -- 6.1.1   Direct Numerical Simulation -- 6.1.2   Large-Eddy Simulation -- 6.1.3   Reynolds-Averaged Navier-Stokes -- 6.2   Reynolds-Averaged Navier-Stokes Closure Models -- Reference -- Chapter 7 : Grid Independence Tests -- 7.1   How to Test for Sufficient Grid Resolution -- 7.2   Case Study -- References -- Chapter 8 : Model Verification, Calibration, and Validation -- 8.1  Sources of Uncertainty in Engineering Computational Fluid Dynamics Simulations.8.2   Verification -- 8.3   Calibration -- 8.4   Validation -- References -- Chapter 9 : Documentation and Reporting -- Chapter 10 : Quality Control -- 10.1   Quality Control Procedures -- 10.2   Why Quality Control Is Important -- Chapter 11 : Conclusions -- Index.This publication introduces a general framework for providing the best computational fluid dynamics modeling practices for water infrastructure design and retrofit. It serves as a primer for developing future material for applications in the water and wastewater fields.Computational fluid dynamicsGenerated by AIHydraulic engineeringGenerated by AIComputational fluid dynamicsHydraulic engineeringSpelman David1825176Yee Tien1825177Pathapati Srikanth1825178Beck Kade J1825179Lee Johnny308546Knatz Carrie1825180Wang Ruo-Qian1825181Zhang Jie639315Camacho-Rincon Rene1825182Kamojjala Sri1825183MiAaPQMiAaPQMiAaPQBOOK9911007275203321Computational Fluid Dynamics Modeling in Water Infrastructure4392697UNINA