01287nam2 22003373i 450 MIL065640520231121125551.0222105480620181017d1994 ||||0itac50 bafrefrz01i xxxe z01n[1]Maurice Barrèspréface par Éric RousselParisÉditions Laffont1994CLXIII, 1507 p.19 cmBouquinsContiene : Le culte du moi ; L'ennemi des lois ; Du sang, de la volupté et de la mort ; Le roman de l'energie nationale001BVE00268422001 Bouquins001MIL06564012001 Romans et voyagesMaurice Barrèsèdition établie par Vital Rambaud1Barrès, MauriceRAVV047579070389352Roussel, EricTO0V152751Barres, Auguste-MauriceMILV113669Barrès, MauriceITIT-0120181017IT-FR0017 Biblioteca umanistica Giorgio ApreaFR0017 NMIL0656405Biblioteca umanistica Giorgio Aprea 52MAG 1/398.1 52FLS0000118355 VMB RS A 2018101720181017 5213610908UNICAS04444nam 22007213u 450 991100707840332120230802010913.09780486134680048613468797816219863241621986322(CKB)2550000001186511(EBL)1894799(SSID)ssj0001002736(PQKBManifestationID)12489502(PQKBTitleCode)TC0001002736(PQKBWorkID)11016505(PQKB)10452345(MiAaPQ)EBC1894799(Au-PeEL)EBL1894799(CaONFJC)MIL565882(OCoLC)868272603(Perlego)110847(EXLCZ)99255000000118651120141222d2012|||| u|| |engur|n|---|||||txtccrIntroduction to Analysis1st ed.Newburyport Dover Publications20121 online resource (455 p.)Dover Books on MathematicsDescription based upon print version of record.9780486650388 0486650383 9781306346313 1306346312 Cover; Title Page; Copyright Page; Preface; Contents; Chapter I. Notions from Set Theory; 1. Sets and elements. Subsets; 2. Operations on sets; 3. Functions; 4. Finite and infinite sets; Problems; Chapter II. The Real Number System; 1. The field properties; 2. Order; 3. The least upper bound property; 4. The existence of square roots; Problems; Chapter III. Metric Spaces; 1. Definition of metric space. Examples; 2. Open and closed sets; 3. Convergent sequences; 4. Completeness; 5. Compactness; 6. Connectedness; Problems; Chapter IV. Continuous Functions 1. Definition of continuity. Examples 2. Continuity and limits; 3. The continuity of rational operations. Functions with values in En; 4. Continuous functions on a compact metric space; 5. Continuous functions on a connected metric space; 6. Sequences of functions; Problems; Chapter V. Differentiation; 1. The definition of derivative; 2. Rules of differentiation; 3. The mean value theorem; 4. Taylor's theorem; Problems; Chapter VI. Riemann Integration; 1. Definitions and examples; 2. Linearity and order properties of the integral; 3. Existence of the integral 4. The fundamental theorem of calculus 5. The logarithmic and exponential functions; Problems; Chapter VII. Interchange of Limit Operations; 1. Integration and differentiation of sequences of functions; 2. Infinite series; 3. Power series; 4. The trigonometric functions; 5. Differentiation under the integral sign; Problems; Chapter VIII. The Method of Successive Approximations; 1. The fixed point theorem; 2. The simplest case of the implicit function theorem; 3. Existence and uniqueness theorems for ordinary differential equations; ProblemsChapter IX. Partial Differentiation 1. Definitions and basic properties; 2. Higher derivatives; 3. The implicit function theorem; Problems; Chapter X. Multiple Integrals; 1. Riemann integration on a closed interval in En. Examples and basic properties; 2. Existence of the integral. Integration on arbitrary subsets of En. Volume; 3. Iterated integrals; 4. Change of variable; Problems; Suggestions for Further Reading; Index<DIV>Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. Rigorous and carefully presented, the text assumes a year of calculus and features problems at the end of each chapter. 1968 edition.</DIV>Dover Books on MathematicsMathematical analysisMathematical analysisEngineering & Applied SciencesHILCCApplied MathematicsHILCCMathematical analysis.Mathematical analysis.Engineering & Applied SciencesApplied Mathematics515Rosenlicht Maxwell41614AU-PeELAU-PeELAU-PeELBOOK9911007078403321Introduction to analysis1427464UNINA