04965nam 2200637 a 450 991100651210332120200520144314.01-299-40296-80-08-057046-1(CKB)2550000001017858(EBL)1160893(OCoLC)841906521(SSID)ssj0000908853(PQKBManifestationID)12345920(PQKBTitleCode)TC0000908853(PQKBWorkID)10901673(PQKB)10962974(MiAaPQ)EBC1160893(EXLCZ)99255000000101785820130416d1980 uy 0engur|n|---|||||txtccrStatistical physicsPart I /by L.D. Landau and E.M. Lifshitz ; translated from the Russian by J.B. Sykes and M.J. Kearsley3rd ed. /rev. and enl. by E.M. Lifshitz and L.P. Pitaevskii.Amsterdam ;Boston Elsevier/Butterworth Heinemann19801 online resource (563 p.)Course of theoretical physics ;v. 5Statistical physics ;pt. 1Description based upon print version of record.0-7506-3372-7 Includes bibliographical references and index.Front Cover; Statistical Physics, Part 1; Copyright Page; Table of Contents; Preface to the third Russian edition; From the Preface to previous Russian editions; Notation; CHAPTER I. THE FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS; 1. Statistical distributions; 2. Statistical independence; 3. Liouville's theorem; 4. The significance of energy; 5. The statistical matrix; 6. Statistical distributions in quantum statistics; 7. Entropy; 8. The law of increase of entropy; CHAPTER II. THERMODYNAMIC QUANTITIES; 9. Temperature; 10. Macroscopic motion; 11. Adiabatic processes12. Pressure 13. Work and quantity of heat; 14. The heat function; 15. The free energy and the thermodynamic potential; 16. Relations between the derivatives of thermodynamic quantities; 17. The thermodynamic scale of temperature; 18. The Joule-Thomson process; 19. Maximum work; 20. Maximum work done by a body in an external medium; 21. Thermodynamic inequalities; 22. Le Chatelier's principle; 23. Nernst's theorem; 24. The dependence of the thermodynamic quantities on the number of particles; 25. Equilibrium of a body in an external field; 26. Rotating bodies 27. Thermodynamic relations in the relativistic regionCHAPTER III. THE GIBBS DISTRIBUTION; 28. The Gibbs distribution; 29. The Maxwellian distribution; 30. The probability distribution for an oscillator; 31. The free energy in the Gibbs distribution; 32. Thermodynamic perturbation theory; 33. Expansion in powers of h; 34. The Gibbs distribution for rotating bodies; 35. The Gibbs distribution for a variable number of particles; 36. The derivation of the thermodynamic relations from the Gibbs distribution; CHAPTER IV. IDEAL GASES; 37. The Boltzmann distribution 38. The Boltzmann distribution in classical statistics 39. Molecular collisions; 40. Ideal gases not in equilibrium; 41. The free energy of an ideal Boltzmann gas; 42. The equation of state of an ideal gas; 43. Ideal gases with constant specific heat; 44. The law of equipartition; 45. Monatomic ideal gases; 46. Monatomic gases. The effect of the electronic angular momentum; 47. Diatomic gases with molecules of unlike atoms. Rotation of molecules; 48. Diatomic gases with molecules of like atoms. Rotation of molecules; 49. Diatomic gases. Vibrations of atoms 50. Diatomic gases. The effect of the electronic angular momentum 51. Polyatomic gases; 52. Magnetism of gases; CHAPTER V. THE FERMI AND BOSE DISTRIBUTIONS; 53. The Fermi distribution; 54. The Bose distribution; 55. Fermi and Bose gases not in equilibrium; 56. Fermi and Bose gases of elementary particles; 57. A degenerate electron gas; 58. The specific heat of a degenerate electron gas; 59. Magnetism of an electron gas. Weak fields; 60. Magnetism of an electron gas. Strong fields; 61. A relatiristic degenerate electron gas; 62. A degenerate Bose gas 63. Black-body radiationA lucid presentation of statistical physics and thermodynamics which develops from the general principles to give a large number of applications of the theory.Statistical physicsStatistical physics.530.1/3Landau L. D(Lev Davidovich),1908-1968.40436Lifshitz E. M1822195Pitaevskii L. P1822196Sykes J. B1822197Kearsley M. J283543MiAaPQMiAaPQMiAaPQBOOK9911006512103321Statistical physics4388313UNINA