01099nam0-22003131i-450-9900069653004033213-214-06044-9000696530FED01000696530(Aleph)000696530FED0100069653020011003d1986----km-y0itay50------bagerATy-------001yyAbhandlung über die Principien des allgemeinen bürgerlichen Gesetzbuchesfür die gesammten deutschen Erbländer der österreichischen Monarchievom Hofrath von Zeillerherausgegeben von Wilhelm BraunederWienMainz1986125 p.20 cmRipr. facs. dell'ed.: Wien : [s.e.], 1816-182034620itZeiller,Franz Von<1751-1828>256429Brauneder,Wilhelm256430ITUNINARICAUNIMARCBK990006965300403321XXXIV A (Austria) 11290 ddrDDRDDRAbhandlung über die Principien des allgemeinen bürgerlichen Gesetzbuches699880UNINA02812nam 22005415 450 991100254480332120250512130254.03-031-85754-210.1007/978-3-031-85754-6(CKB)38776177900041(DE-He213)978-3-031-85754-6(MiAaPQ)EBC32110169(Au-PeEL)EBL32110169(OCoLC)1524420370(EXLCZ)993877617790004120250512d2025 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierConvexity in Newton's Method /by José Antonio Ezquerro Fernández, Miguel Ángel Hernández Verón1st ed. 2025.Cham :Springer Nature Switzerland :Imprint: Birkhäuser,2025.1 online resource (XII, 242 p. 48 illus., 35 illus. in color.) Frontiers in Mathematics,1660-80543-031-85753-4 The degree of logarithmic convexity -- The Newton method and convexity -- Accelerations of the Newton method -- Newton-like methods with high order of convergence -- Optimization of the Chebyshev method.This monograph examines a variety of iterative methods in Banach spaces with a focus on those obtained from the Newton method. Together with the authors’ previous two volumes on the topic of the Newton method in Banach spaces, this third volume significantly extends Kantorovich's initial theory. It accomplishes this by emphasizing the influence of the convexity of the function involved, showing how improved iterative methods can be obtained that build upon those introduced in the previous two volumes. Each chapter presents theoretical results and illustrates them with applications to nonlinear equations, including scalar equations, integral equations, boundary value problems, and more. Convexity in Newton's Method will appeal to researchers interested in the theory of the Newton method as well as other iterative methods in Banach spaces.Frontiers in Mathematics,1660-8054Functional analysisOperator theoryFunctional AnalysisOperator TheoryFunctional analysis.Operator theory.Functional Analysis.Operator Theory.515.7Ezquerro Fernández José Antonioauthttp://id.loc.gov/vocabulary/relators/aut913709Hernández Verón Miguel Ángelauthttp://id.loc.gov/vocabulary/relators/autMiAaPQMiAaPQMiAaPQBOOK9911002544803321Convexity in Newton's Method4384734UNINA