01015nam a2200277 i 450099100231348970753620020503163953.0000704s1967 it ||| | ita b1034679x-39ule_instEXGIL101825ExLBiblioteca Interfacoltàita801.9Doubrovsky, Serge159251Critica e oggettività /Serge Doubrovsky ; traduzione F. De Michelis BarnabòPadova :Marsilio,1967270 p. ;22 cm.Saggi [Marsilio]. N. S ;5Tit. orig.: Pourquoi la nouvelle critiqueCritica letterariaDe Michelis Barnabò, Francesca.b1034679x21-02-1727-06-02991002313489707536LE002 It. XIV F 2212002000660404le002-E0.00-l- 00000.i1040694327-06-02Pourquoi la nouvelle critique252256UNISALENTOle00201-01-00ma -itait 0103905nam 22007575 450 991099279090332120250330141137.09783031571008303157100210.1007/978-3-031-57100-8(CKB)38166501800041(DE-He213)978-3-031-57100-8(MiAaPQ)EBC31981109(Au-PeEL)EBL31981109(EXLCZ)993816650180004120250330d2025 u| 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierTwo-dimensional Crossing and Product Cubic Systems, Vol. II Crossing-linear and Self-quadratic Product Vector Field /by Albert C. J. Luo1st ed. 2025.Cham :Springer Nature Switzerland :Imprint: Springer,2025.1 online resource (X, 259 p. 83 illus., 82 illus. in color.) 9783031570995 3031570995 Quadratic and Cubic Product Systems -- Inflection Singularity and Bifurcation Dynamics -- Saddle-node and hyperbolic-flow singular dynamics.This book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center). Develops a theory of crossing and product cubic systems with a crossing-linear and self-quadratic product vector field; Presents equilibrium series with hyperbolic-to-hyperbolic-scant flows and with paralleled hyperbolic flows; Shows equilibrium series switching bifurcations by up-down hyperbolic upper-to-lower saddles, parabola-saddles, et al.DynamicsNonlinear theoriesEngineering mathematicsEngineeringData processingMultibody systemsVibrationMechanics, AppliedPlasma wavesAlgebra, UniversalApplied Dynamical SystemsMathematical and Computational Engineering ApplicationsMultibody Systems and Mechanical VibrationsWaves, instabilities and nonlinear plasma dynamicsGeneral Algebraic SystemsDynamics.Nonlinear theories.Engineering mathematics.EngineeringData processing.Multibody systems.Vibration.Mechanics, Applied.Plasma waves.Algebra, Universal.Applied Dynamical Systems.Mathematical and Computational Engineering Applications.Multibody Systems and Mechanical Vibrations.Waves, instabilities and nonlinear plasma dynamics.General Algebraic Systems.515.39Luo Albert C. Jauthttp://id.loc.gov/vocabulary/relators/aut720985MiAaPQMiAaPQMiAaPQBOOK9910992790903321Two-dimensional Crossing and Product Cubic Systems, Vol. II4349102UNINA