10768nam 22005533 450 991098598790332120250313080342.0978139427325613942732589781394273263139427326697813942732701394273274(CKB)37788437500041(MiAaPQ)EBC31955723(Au-PeEL)EBL31955723(OCoLC)1511108352(EXLCZ)993778843750004120250313d2025 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierCrop Biofortification Biotechnological Approaches for Achieving Nutritional Security under Changing Climate1st ed.Newark :John Wiley & Sons, Incorporated,2025.©2025.1 online resource (499 pages)9781394273249 139427324X Cover -- Half Title Page -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1: Biofortification of Food Grains in Relation to Food Security -- 1.1 Introduction -- 1.1.1 Micronutrient Malnutrition -- 1.1.2 Role of Micronutrients in Humans -- 1.1.2.1 Iron -- 1.1.2.2 Zinc -- 1.1.2.3 Selenium -- 1.1.2.4 Iodine -- 1.1.2.5 Vitamin A -- 1.1.2.6 Folates -- 1.1.3 Interventions to Overcome Deficiencies -- 1.1.3.1 Dietary Diversification -- 1.1.3.2 Supplementation -- 1.1.3.3 Food Fortification -- 1.1.3.4 Biofortification -- 1.2 Agronomic Biofortification -- 1.2.1 Types of Agronomic Biofortification -- 1.2.2 Basal Application -- 1.2.3 Foliar Application -- 1.2.4 Basal and Foliar Application -- 1.3 Conclusion -- References -- Chapter 2: Golden Rice Project and Its Impact on Global Nutritional Security -- 2.1 Introduction -- 2.2 Rice -- 2.3 The Place of Rice (Oryza sativa L.) in Human Nutrition -- 2.4 Biofortification -- 2.4.1 Biofortification with Plant Breeding -- 2.4.2 Agricultural Biofortification -- 2.4.3 Genetic Biofortification -- 2.5 Golden Rice -- 2.5.1 Golden Rice Project -- 2.5.2 History of the Golden Rice Project -- 2.5.3 Gene Transfer for Golden Rice -- 2.6 Malnutrition -- 2.6.1 What About Global Malnutrition, According to the World Health Organization? -- 2.6.2 What Has Happened Since the Golden Rice Work Began? -- 2.7 Golden Rice Project and Its Impact on Global Nutritional Security -- 2.7.1 How Can Malnutrition Be Prevented in the Future? What Should Be Done? -- 2.8 Conclusion -- References -- Chapter 3: Biofortification of Cereals and Pulses Using New Breeding Techniques -- 3.1 Introduction -- 3.2 Malnutrition a Hidden Hunger -- 3.3 What Has to Be Biofortifying? -- 3.3.1 Cereals -- 3.3.2 Pulses -- 3.4 Methods to Address Hunger -- 3.4.1 Conventional Approaches -- 3.4.2 HarvestPlus Program.3.5 New Breeding Techniques -- 3.5.1 Transgenic Breeding -- 3.5.1.1 Cereals -- 3.5.1.2 Pulses -- 3.5.1.3 RNA Interference -- 3.5.1.4 Cereals -- 3.5.1.5 Pulses -- 3.6 Role of Genome-wide Association Studies -- 3.7 Speed Breeding's Part in the Slow Development of Biofortified Crops -- 3.8 NBT-developed Varieties' Regulatory Aspects -- 3.9 Conclusion and Future Perspectives -- References -- Chapter 4: Crops Biofortification through OMICs based Knowledge -- 4.1 Introduction -- 4.1.1 Navigating the Current Challenges in Omics Adoption: From Data Integration to Ethical Considerations -- 4.1.1.1 Technical Challenges in Omics Adoption -- 4.1.1.2 Analytical Techniques -- 4.1.1.3 Regulatory Frameworks and Standards -- 4.1.1.4 Reproducibility and Transparency -- 4.1.1.5 Ethical Considerations -- 4.1.1.6 Equity and Justice -- 4.2 Advancements in Omics Technologies -- 4.2.1 Genomics -- 4.2.2 Transcriptomics -- 4.2.3 Proteomics -- 4.2.4 Metabolomics -- 4.2.5 Epigenomics -- 4.2.6 Integration of Omics Data -- 4.2.6.1 Multi-omics Approaches -- 4.2.6.2 Systems Biology -- 4.2.6.3 Big Data Analytics -- 4.3 Applications in Healthcare -- 4.3.1 Precision Medicine -- 4.3.2 Disease Biomarkers -- 4.3.3 Drug Discovery and Development -- 4.3.4 Predictive Diagnostics -- 4.4 Challenges and Opportunities -- 4.4.1 Data Standardization and Integration -- 4.4.2 Ethical and Regulatory Considerations -- 4.4.3 Cost and Accessibility -- 4.5 Future Directions -- 4.5.1 Single-cell Omics -- 4.5.2 Multi-omics Integration -- 4.5.3 AI and Deep Learning -- 4.6 Genomics in Biofortification -- 4.6.1 Biofortification Constraints -- 4.7 Transcriptomics and Proteomics -- 4.8 Metabolomics for Nutrient Profiling -- 4.9 Integration of Omics Data and Multi-omics Approaches -- 4.9.1 Challenges and Future Perspectives -- 4.10 Importance of Biofortification -- 4.11 Conclusion -- References.Chapter 5: Current Challenges and Recent Advancements in the Adoption of Omics to Enhance Biofortification -- 5.1 Introduction -- 5.1.1 Biofortification -- 5.1.2 Biofortification of Plant-based Foods -- 5.2 Omics Technologies -- 5.2.1 Dietary Diversification -- 5.2.2 Food Supplementation -- 5.2.3 Food Fortification -- 5.3 Approaches for Biofortification -- 5.3.1 Agronomic Biofortification -- 5.3.2 Plant Breeding -- 5.3.3 Conventional Breeding -- 5.3.4 Mutation Breeding -- 5.3.5 Molecular Breeding -- 5.4 Genomics in Biofortification -- 5.5 Regulations, Consumer Acceptance, Opportunities, and Prospects -- 5.5.1 Recent Advancements -- 5.5.2 Genome-wide Association Studies -- 5.6 Transcriptomics in Biofortification -- 5.6.1 Influences on the Transcriptome -- 5.7 Multi-omics Platforms -- 5.7.1 The Advantages and Disadvantages of Individual Omics -- 5.7.2 Proteomics -- 5.7.3 Metabolomics -- 5.7.4 Exclusive Experiments to Specific Omics Platforms -- 5.7.4.1 Linking Genotype to Phenotype -- 5.7.5 Quantification of the Proteome -- 5.7.6 Quantification of the Metabolome -- 5.7.7 Concerns Revealed Among the Omics Programs -- 5.7.7.1 Data Handling -- 5.7.7.2 Annotation -- 5.7.8 Statistical Power -- 5.7.9 Data Archiving and Sharing -- 5.7.10 Tools Accessible for Incorporation of Multi-omics Data -- 5.8 Immunity and Infection -- 5.8.1 Cancer -- 5.9 Host Microbiome Interactions -- 5.10 Statistical Methods for Present Challenges -- 5.11 Sample Number Versus Molecule Numbers -- 5.11.1 Dimension Reduction -- 5.12 Recent Challenges and Viewing to the Future -- 5.12.1 Adjusting, Supporting, and Sharing Workflows -- 5.12.3 Challenges in Using Multi-omics Approaches for Clinical Diagnostics and Prognostics -- 5.13 Conclusion -- References -- Chapter 6: Role of Nanoparticles in Improving Biofortification: An Overview -- 6.1 Introduction.6.2 Biofortification of Food Crops: Tackling Malnutrition and Hidden Hunger -- 6.2.1 Food Fortification -- 6.2.2 Food Supplementation -- 6.2.3 Diet Diversification -- 6.3 Strategies for Crop Biofortification -- 6.3.1 Agronomic Strategies -- 6.3.2 Genetic Strategies -- 6.4 Nanotechnology-based Approaches for Crop Biofortification -- 6.5 Nutrient-based Nanoparticles in Food Crops and Human Health -- 6.5.1 Zn-based Nanoparticles -- 6.5.2 Fe-based Nanoparticles -- 6.5.3 Se-based Nanoparticles -- 6.5.4 Cu-based Nanoparticles -- 6.6 Mechanism of Nanoparticle Uptake and Translocation in Plants -- 6.6.1 Accumulation of Nanoparticles in Plants and Their Effects -- 6.7 Challenges of Nanoparticle-induced Biofortification -- 6.8 Conclusion -- References -- Chapter 7: Role of Seed-priming in Biofortification -- 7.1 Introduction -- 7.1.1 Historical Perspective of Seed Priming -- 7.2 Seed Structure -- 7.2.1 Viable Seed -- 7.2.2 Process of Seed Germination -- 7.3 Methods of Seed-priming -- 7.3.1 Seed-priming as an Effective Method of Nutrient Biofortification -- 7.4 Conclusion -- References -- Chapter 8: Selenium Biofortification in Wheat: A Way Forward Toward Nutritional Security -- 8.1 Introduction -- 8.2 Essentiality of Selenium for Animal Health -- 8.3 Role of Selenium in Plant Growth and Development -- 8.4 Uptake, Absorption, and Assimilation Dynamics of Selenium in Plants -- 8.5 Se Biofortification in Wheat -- 8.6 Factors Affecting Se Uptake and Absorption -- 8.7 Conclusion and Future Prospects -- References -- Chapter 9: Scope and Research Perspective of Lithium Biofortification in Crop Plants -- 9.1 Introduction -- 9.2 Historical Context of Lithium in Agriculture -- 9.2.1 Sources of Lithium in Environment -- 9.2.2 Lithium Status of Soils and Waters -- 9.2.3 Essential Nature of Li -- 9.2.4 Importance of Lithium in Plants.9.3 Li Uptake, Translocation, and Accumulation in Plants -- 9.4 Conventional and Novel Biofortification Strategies -- 9.4.1 Foliar Biofortification -- 9.4.2 Breeding and Genetic Biofortification -- 9.4.3 Agronomic Biofortification -- 9.5 Scope of Li Biofortification -- 9.5.1 Vegetables -- 9.5.2 Crops -- 9.6 Challenges and Limitations -- 9.7 Conclusion and Future Directions -- References -- Chapter 10: Global Action Plan for Agricultural Diversification for Achieving Zero Hunger -- 10.1 Introduction -- 10.2 Present Status of Global Food Security -- 10.2.1 Challenges in Achieving Zero Hunger -- 10.2.2 The Impact of Agriculture Diversification in Achieving a Sustainable Food System -- 10.3 Essential Principles of Agricultural Diversification -- 10.4 Regulatory Framework for Expanding Agricultural Crop Diversity -- 10.4.1 National Policies for Promoting Agricultural Diversification -- 10.5 Techniques for Implementing Agricultural Diversification -- 10.6 Evaluation for Assessing Progress in Agricultural Diversification -- 10.7 Importance of International Corporation -- 10.8 Conclusion -- References -- Chapter 11: Targeting Tissue-Specific Zinc Acquisition in Cereal -- 11.1 Introduction to Tissue-Specific Zinc Acquisition -- 11.2 Molecular Mechanisms of Zn Uptake in Cereal Roots -- 11.3 Enhancing Zn Transporters Expression in Specific Tissues of Cereal -- 11.4 Strategies for Enhancing Zn Concentration in Plant Tissues -- 11.4.1 Genetic Approach -- 11.4.2 Agronomic Approach -- 11.4.2.1 Seed Treatments -- 11.4.2.2 Soil Applications -- 11.4.2.3 Foliar Applications -- 11.4.2.4 Biofertilizers -- 11.5 Conclusion -- References -- Chapter 12: Combating Mineral Malnutrition Through Iron Biofortification in Cereal Crops -- 12.1 Introduction -- 12.2 Mineral Nutrients -- 12.2.1 Role of Mineral Nutrients in Soil -- 12.2.2 Role of Mineral Nutrients in Plants.12.2.2.1 Nitrogen.Shah Adnan Noor1437944Fiaz Sajid1780924Aslam Muhammad643574Iqbal Javed1791458Qayyum Abdul1780925MiAaPQMiAaPQMiAaPQBOOK9910985987903321Crop Biofortification4328808UNINA