01226nam--2200385---450-99000356110020331620110907134004.0978-88-598-0606-6000356110USA01000356110(ALEPH)000356110USA0100035611020110907d2011----km-y0itay50------baitaIT||||||||001yyCommentario al pacchetto sicurezzal. 15 luglio 2009, n. 94a cura di Giovannangelo De Francesco...[et al.]TorinoUTETgiuridica2011XX, 501 p.24 cm<<Le>> leggi commentate2001<<Le>> leggi commentate2001001-------2001Pubblica sicurezzaLegislazione [:] Italia. Legge 15 luglio 2009, n. 94BNCF344.45052DE FRANCESCO,GiovannangeloITsalbcISBD990003561100203316XXVI.1.B. 9972104 G.XXVI.1. b.00298347BKGIUFIORELLA9020110907USA011327FIORELLA9020110907USA011340Commentario al pacchetto sicurezza1116920UNISA05258nam 2200601 a 450 991097531490332120251117090846.01-61324-498-3(CKB)2550000000044236(EBL)3019797(SSID)ssj0000522156(PQKBManifestationID)12212555(PQKBTitleCode)TC0000522156(PQKBWorkID)10527655(PQKB)10076745(MiAaPQ)EBC3019797(Au-PeEL)EBL3019797(CaPaEBR)ebr10671362(OCoLC)923661947(BIP)18682544(EXLCZ)99255000000004423620080205d2008 uy 0engur|n|---|||||txtccrDynamical symmetry of the Kepler-Coulomb problem in classical and quantum mechanics non-relativistic and relativistic /Tamar T. Khachidze and Anzor A. Khelashvili1st ed.New York Nova Science Publishersc20081 online resource (168 p.)Description based upon print version of record.1-60456-499-7 Includes bibliographical references (p. [129]-143) and index.Intro -- DYNAMICAL SYMMETRY OF THEKEPLER-COULOMB PROBLEM INCLASSICAL AND QUANTUMMECHANICS: NON-RELATIVISTICAND RELATIVISTIC -- CONTENTS -- ABOUT THE AUTHORS -- PREFACE -- INTRODUCTION -- THE GENERAL CONCEPTS OF DYNAMICAL SYMMETRIES -- REFERENCES -- HIDDEN (DYNAMICAL) SYMMETRIES IN CLASSICALMECHANICS -- I.1. CONSTANTS OF MOTION AS GENERATORS OF INFINITESIMALTRANSFORMATIONS -- Remark -- I.2. DERIVATION OF LRL VECTOR -- I.3. APPLICATIONS OF LRL VECTOR IN CLASSICAL PHYSICS -- (I) LRL Vector and the Orbit Equation -- (II). Algebraic Aspects of the Kepler Problem -- I.4. DYNAMICAL SYMMETRY FOR THE ISOTROPICHARMONIC OSCILLATOR -- I.5. POSSIBLE GENERALIZATIONS OF DYNAMICAL SYMMETRIES -- Comments -- I.6. APPLICATION OF THE DYNAMICAL EVOLUTION OF LRLVECTOR IN GENERAL CENTRAL CASE [12] -- Equations of Motion for General Central Forces -- Equations of Motion for Arbitrary Forces -- Summary Comments on Dynamical Symmetries in Classical(Non-Relativistic) Mechanics -- REFERENCES -- HIDDEN SYMMETRY IN CLASSICAL RELATIVISTICMECHANICS -- II.1. AUXILIARY PROBLEM: LRL VECTOR FOR A MODIFIEDKEPLER PROBLEM -- II.2. THE LAPLACE-RUNGE-LENZ VECTOR AND THE LORENTZBOOST -- II.3. POST-NEWTONIAN EXTENSIONS OF THE LRL VECTOR -- II.4. RELATIVISTIC KEPLER PROBLEM -- REFERENCES -- DYNAMICAL SYMMETRIES IN NON-RELATIVISTICQUANTUM MECHANICS -- III.1. THE HYDROGEN ATOM (GENERAL CONSIDERATION) -- Algebraic Aspects of the Hydrogen Problem [2] -- III.2. THE HYDROGEN ATOM IN THE MOMENTUM -- Representation -- Example of Application of The Momentum Representation:Dynamical Symmetry of a Three Dimensional Wick-Cutkosky Problem [7] -- III. 3. THE HYDROGEN ATOM AND THE LORENTZ GROUP -- III. 4. THREE DIMENSIONAL ISOTROPIC HARMONIC OSCILLATORAND SU(3) [14] -- REFERENCES -- A NEW KIND OF DYNAMICAL SYMMETRY -SUPERSYMMETRY -- IV.1 SUPERSYMMETRIC QUANTUM MECHANICS.IV.2. SUPERSYMMETRY AND THE RADIAL PROBLEM -- IV. 3. EXACT SUPERSYMMETRY IN THE NON-RELATIVISTICHYDROGEN ATOM -- REFERENCES -- RELATIVISTIC QUANTUM MECHANICS -- V.1. SUPERSYMMETRY IN THE DIRAC EQUATION FOR THECOULOMB POTENTIAL -- APPENDIX: SHAPE INVARIANCE (SI) -- V. 2. AN "ACCIDENTAL SYMMETRY" OPERATORFOR THE DIRAC EQUATION IN THE COULOMB POTENTIAL -FROM PAULI TO DIRAC -- V. 3. PHYSICAL MEANING AND SOME APPLICATIONSOF JOHNSON - LIPPMANN OPERATOR -- APPENDIX: CALCULATION OF RELEVANT COMMUTATORS -- REFERENCES -- GENERALIZATIONS TO THE RELATIVISTIC DIRACHAMILTONIAN -- VI.1. SUPERSYMMETRY OF THE DIRAC HAMILTONIANFOR GENERAL CENTRAL POTENTIALS -- VI.2. WHERE IS THE HARMONIC OSCILLATOR? -- VI.3. RELATIVISTIC QUANTUM MECHANICSOF DIRAC OSCILLATOR -- VI.4. THE LORENTZ - SCALAR POTENTIALIN THE DIRAC EQUATION -- VI.5. ALGEBRAIC DERIVATION OF THE SPECTRUM OF THEDIRAC HAMILTONIAN FOR AN ARBITRARY COMBINATIONOF THE LORENTZ-SCALAR AND LORENTZ-VECTOR COULOMBPOTENTIAL -- Comments -- REFERENCES -- SOME RECENT DEVELOPMENTS -- VII.1 HIDDEN SUPERSYMMETRY OF THE DIRAC-COULOMBPROBLEM AND THE BIEDENHARN APPOACH -- VII.2 SOME PRACTICAL GENERALIZATIONS: THE LRL VECTOR INTHE PRESENCE OF AN ELECTRIC FIELD [9] -- CONCLUSIONS -- REFERENCES -- BIBLIOGRAPHY (PART I) -- PART II -- INDEX.The purpose of this book is to develop a systematic theory for the hidden symmetry generators, which are simultaneously the odd generators of superalgebra in relativistic quantum mechanics. It is devoted to the description of so-called hidden symmetry of the Kepler problem in classical and quantum mechanics.Symmetry (Physics)MechanicsQuantum theorySymmetry (Physics)Mechanics.Quantum theory.539.7/25Khachidze Tamar T1863329Khelashvili A. A1863330MiAaPQMiAaPQMiAaPQBOOK9910975314903321Dynamical symmetry of the Kepler-Coulomb problem in classical and quantum mechanics4469936UNINA