04979nam 2200613Ia 450 991078227270332120230721032746.01-281-93836-X9786611938369981-279-073-X(CKB)1000000000538147(EBL)1193521(SSID)ssj0000153494(PQKBManifestationID)11159197(PQKBTitleCode)TC0000153494(PQKBWorkID)10392967(PQKB)10345113(MiAaPQ)EBC1193521(WSP)00001914 (Au-PeEL)EBL1193521(CaPaEBR)ebr10256004(CaONFJC)MIL193836(OCoLC)747539625(EXLCZ)99100000000053814720080505d2008 uy 0engur|n|---|||||txtccrA farewell to entropy[electronic resource] statistical thermodynamics based on information : S=logW /Arieh Ben-NaimHackensack, N.J. World Scientificc20081 online resource (412 p.)Description based upon print version of record.981-270-707-7 981-270-706-9 Includes bibliographical references (p. 373-379) and index.1. Introduction. 1.1. A brief history of temperature and entropy. 1.2. The association of entropy with disorder. 1.3. The association of entropy with missing information -- 2. Elements of probability theory. 2.1. Introduction. 2.2. The axiomatic approach. 2.3. The classical definition. 2.4. The relative frequency definition. 2.5. Independent events and conditional probability. 2.6. Bayes' Theorem. 2.7. Random variables, average, variance and correlation. 2.8. Some specific distributions. 2.9. Generating functions. 2.10. The law of large numbers -- 3. Elements of information theory. 3.1. A qualitative introduction to information theory. 3.2. Definition of Shannon's information and its properties. 3.3. The various interpretations of the Quantity H. 3.4. The assignment of probabilities by the maximum uncertainty principle. 3.5. The missing information and the average number of binary questions needed to acquire it. 3.6. The false positive problem, revisited. 3.7. The urn problem, revisited -- 4. Transition from the general MI to the thermodynamic MI. 4.1. MI in binding systems: one kind of information. 4.2. Some simple processes in binding systems. 4.3. MI in an ideal gas system: two kinds of information. The Sackur-Tetrode equation. 4.4. Comments -- 5. The structure of the foundations of statistical thermodynamics. 5.1. The isolated system; the micro-canonical ensemble. 5.2. System in a constant temperature; the canonical ensemble. 5.3. The classical analog of the canonical partition function. 5.4. The re-interpretation of the Sackur-Tetrode expression from informational considerations. 5.5. Identifying the parameter for an ideal gas. 5.6. Systems at constant temperature and chemical potential; the grand canonical ensemble. 5.7. Systems at constant temperature and pressure; the isothermal isobaric ensemble. 5.8. The mutual information due to intermolecular interactions -- 6. Some simple applications. 6.1. Expansion of an ideal gas. 6.2. Pure, reversible mixing; the first illusion. 6.3. Pure assimilation process; the second illusion. 6.4. Irreversible process of mixing coupled with expansion. 6.5. Irreversible process of demixing coupled with expansion. 6.6. Reversible assimilation coupled with expansion. 6.7. Reflections on the processes of mixing and assimilation. 6.8. A pure spontaneous deassimilation process. 6.9. A process involving only change in the momentum distribution. 6.10. A process involving change in the intermolecular interaction energy. 6.11. Some baffling experiments. 6.12. The second law of thermodynamics.The principal message of this book is that thermodynamics and statistical mechanics will benefit from replacing the unfortunate, misleading and mysterious term "entropy" with a more familiar, meaningful and appropriate term such as information, missing information or uncertainty. This replacement would facilitate the interpretation of the "driving force" of many processes in terms of informational changes and dispel the mystery that has always enshrouded entropy.It has been 140 years since Clausius coined the term "entropy"; almost 50 years since Shannon developed the mathematical theory of "iEntropySecond law of thermodynamicsStatistical thermodynamicsEntropy.Second law of thermodynamics.Statistical thermodynamics.536.73Ben-Naim Arieh1934-471923MiAaPQMiAaPQMiAaPQBOOK9910782272703321A farewell to entropy3719565UNINA11848nam 2200613 a 450 991097449970332120251117005937.01-61728-402-5(CKB)2670000000041865(EBL)3020749(SSID)ssj0000416867(PQKBManifestationID)12110244(PQKBTitleCode)TC0000416867(PQKBWorkID)10422999(PQKB)11206627(MiAaPQ)EBC3020749(Au-PeEL)EBL3020749(CaPaEBR)ebr10680887(OCoLC)662457849(BIP)33698020(BIP)27081220(EXLCZ)99267000000004186520090622d2009 uy 0engur|n|---|||||txtccrEnergy recovery /Edgard DuBois and Arthur Mercier, editors1st ed.Hauppauge N.Y. Nova Science Publishersc20091 online resource (343 p.)Description based upon print version of record.1-60741-065-6 Includes bibliographical references and index.Intro -- ENERGY RECOVERY -- CONTENTS -- PREFACE -- BIOGAS RECOVERY FROM LANDFILLS -- ABSTRACT -- I. INTRODUCTION -- II. REGULATORY CONSIDERATIONS -- A. U Landfill Directive 1999/31/EC -- B. RCRA Regulations -- C. CAA Regulations -- D. CWA Regulations -- III. SANITARY AND BIOREACTOR LANDFILLS -- A. Development of Sanitary Landfills -- B. Bioreactor Landfills -- 1. Anaerobic bioreactor landfills -- 2. Aerobic bioreactor landfills -- 3. Aerobic-anaerobic bioreactor landfills -- C. Features Unique to Bioreactor Landfills -- D. Potential Advantages of Bioreactor Landfills -- IV. LANDFILL GAS (LFG) -- A. Landfill Gas Characteristics -- 1. Density and viscosity -- 2. Heat value content -- 3. Non-methane organic compounds -- 4. Water vapor -- 5. Others -- B. Landfill Gas Composition -- C. Landfill Gas Yield -- D. LFG Emission -- 1. LFG Generation -- 1.1. LFG generation mechanisms -- Volatilization -- Biological decomposition -- Stage I. Hydrolysis/aerobic degradation -- Stage II. Hydrolysis and fermentation -- Stage III. Acetogenesis -- Stage IV. Methanogenesis -- Stage V. Oxidation -- 1.2. Factors affecting LFG generation -- 1. Site characteristics -- 2. Waste characteristics -- 3. Age of the waste -- 4. Temperature -- 5. Pressure -- 6. Moisture content and movement -- 7. Atmospheric conditions -- 8. Oxygen concentration -- 9. Hydrogen concentration -- 10. Precipitation -- 11. Density of the waste -- 12. Nutrients and trace metals -- 13. Acidity -- 14. Inhibitors -- 2. LFG Transport -- 2.1. LFG transport mechanisms -- 2.2. Factors affecting LFG transport mechanisms -- E. LFG Production Enhancement Methods -- 1. Leachate recirculation -- 2. pH buffering -- 3. Sludge addition -- 4. Temperature control -- 5. Reduced waste particle size -- 6. Cell design, daily cover and compaction of waste -- 7. Pre-treatment -- V. LANDFILL GAS BEHAVIOUR.A. LFG Movement and Migration -- B. Monitoring of LFG -- C. LFG Hazards -- 1. LFG explosion hazard -- 2. LFG asphyxiation hazard -- 3. Landfill odors -- VI. MODELING OF METHANE GAS GENERATIONAND EMISSION FROM LANDFILLS -- A. General -- B. U.S.E.P.A. Model - Landgem -- 1. Model description -- 1.1. Input Parameters -- Methane generation potential (L0) -- Methane generation rate (k) -- C. IPCC-First Order Decay (FOD) Model -- 1. Model description -- 1.1. Input Parameters -- Degradable Organic Carbon ( j DOC ) -- Decay rate/methane generation rate ( j k ) -- D. Regression Models -- F. Other Models -- VII. LANDFILL GAS ENERGY SYSTEMS -- A. LFG Collection System -- Passive venting -- Physical barriers -- Pumping extraction systems -- B. LFG Pretreatment System -- C. LFG Utilization System -- 1. Combustion technologies (Flaring Practices) LFG flaring -- 1.1. Open flame flares -- 1.2. Enclosed flame flares -- 1.3. Other enclosed combustion technologies -- 2. Non-combustion technologies -- 2.1. Energy recovery technologies -- 2.2. Gas to product conversion technologies -- VIII. CASE STUDY: CALGARY BIOCELL PROJECT -- A. Introduction -- B. The Calgary Biocell: Background and Construction Phase -- C. Operation of the Calgary Biocell -- 1. Biocell stage 1: Anaerobic decomposition with gas extraction -- 2. Biocell stage 2: Aerobic decomposition -- 3. Biocell stage 3: Mining for recovery of useful/recyclable products -- D. Summary and Conclusions -- REFERENCES -- NOTATIONS -- LANDFILL GAS: GENERATION. MODELS AND ENERGY RECOVERY -- ABSTRACT -- 1. INTRODUCTION -- 2. LANDFILL GAS CHARACTERISTICSAND GENERATION MECHANISMS -- 3. MATHEMATICAL MODELS FOR LANDFILL GASPRODUCTION PREDICTION -- The Triangular Model -- First Order Decay Model: The Scholl Canyon Equation -- Software Application of First Order Decay Model: Landgem -- Modified First Order Model.4. THE ESTIMATION OF K AND L0 IN THE MODELS -- 5. APPLICATION OF THE MODELS TO A STUDY CASE -- 6. ENERGY RECOVERY -- 7. MANAGEMENT OPTION TO IMPROVE ENERGY RECOVERY -- CONCLUSION -- REFERENCES -- ENERGY AND MATERIAL RECOVERY FROMBIOMASS: THE BIOREFINERY APPROACH. CONCEPTOVERVIEW AND ENVIRONMENTAL EVALUATION -- ABSTRACT -- 1. INTRODUCTION -- 2. APPROACHING BIOREFINERY: DEFINITION,CRITERIA AND CHARACTERISTICS -- 2.1. Background and Current Status -- 2.2. Criteria for Biorefinery System -- 2.3. Fossils vs. Biomass as Raw Materials -- 3. OVERVIEW OF BIOREFINERY FEEDSTOCKS,PROCESSES AND PLATFORMS -- 3.1. Biorefinery Feedstocks -- 3.1.1. Sugar crops -- 3.1.2. Starch crops -- 3.1.3. Oil based materials -- 3.1.4. Grasses -- 3.1.5. Lignocellulosic materials -- 3.1.6. Organic residues and others -- 3.2. Technological Processes -- 3.2.1. Thermochemical processes -- 3.2.2. Biochemical processes -- 3.2.3. Mechanical/physical processes -- 3.2.4. Chemical processes -- 3.3. Platforms -- 3.3.1. Biogas -- 3.3.2. Syngas -- 3.3.3. Hydrogen -- 3.3.4. C6 sugars -- 3.3.5. C5 sugars -- 3.3.6. Levulinic acid -- 3.3.7. Furfural -- 3.3.8. Pyrolytic liquid -- 3.3.9. Vegetable oil -- 3.3.10. Organic juice -- 4. LIFE CYCLE ASSESSMENT OF BIOREFINERY SYSTEMS:A CASE STUDY -- 4.1. Introduction to LCA -- 4.2. Goal and Scope Definition -- 4.2.1. Biorefinery: scope and system boundaries -- 4.2.2. Biorefinery material products -- 4.2.3. Biorefinery energy products -- 4.2.4. Fossil reference system -- 4.2.5. Functional unit -- 4.2.6 Allocation -- 4.3. Life Cycle Impact Assessment -- 4.3.1. Results and interpretation -- 4.3.2. Allocation results -- 5. CONCLUSION -- REFERENCES -- PINCH TECHNOLOGY FOR WASTE HEAT RECOVERYAPPLICATIONS IN OIL INDUSTRY -- INTRODUCTION -- TARGETING USING GRAPHICAL METHOD -- Constructing the Composite Curves -- TARGETING USING ALGEBRAIC METHOD.Information needed -- 1. Constructing Temperature Iinterval Diagram -- 2. Constructing Tables of Exchangeable Heat Loads and Cooling Capacities -- 3. Constructing Thermal Cascade Diagrams -- TARGETING USING MATHEMATICAL PROGRAMMING METHOD -- CONSTRUCTING THE GRAND COMPOSITE CURVE (G.C.C) -- Multiple Utility Targeting/Selection using Grand Composite Curve (GCC) -- Understanding and Applying the Grand Composite Curve -- HEAT EXCHANGERS NETWORK (HEN) SYNTHESIS -- The Pinch Design Method -- HEN DESIGN METHOD -- Four Streams Problem Example -- Start at the Pinch -- The CP(FCp) inequality for individual matches -- The CP(FCp) table -- The "tick-off" heuristic -- Streams Splitting -- PART II. HEAT INTEGRATION APPLICATIONS IN OIL INDUSTRY -- Oil and Gas Separation Plant Process Description -- Heat Integration Application in Oil and Gas Separation Facility -- CONCLUSION -- REFERENCES -- TREATMENT OF SECONDARY SLUDGEFOR ENERGY RECOVERY -- ABSTRACT -- 1. INTRODUCTION -- 2. SECONDARY SLUDGE TREATMENT METHODS -- 2.1. Incineration -- 2.2. Pyrolysis -- 2.3. Gasification -- 2.4. Direct Liquefaction -- 2.5. Supercritical Water Oxidation (SCWO) -- 2.6. Anaerobic Digestion -- 3. DISCUSSION AND COMPARISON OF TREATMENT METHODS -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- ENERGY RECOVERY FROM WASTE: COMPARISONOF DIFFERENT TECHNOLOGY COMBINATIONS -- ABSTRACT -- MSW Characteristics and Pre-treatment -- Combustion with Energy Recovery -- Gasification with Energy Recovery -- Pyrolysis with Energy Recovery -- Anaerobic Digestion -- Comparison of Thermal Processes -- Comparison of Integrated Energy Recovery Systems -- CONCLUSION -- REFERENCES -- ENERGY RECOVERY FROM WASTEINCINERATION: LINKING THE SYSTEMSOF ENERGY AND WASTE MANAGEMENT -- ABSTRACT -- INTRODUCTION -- DEVELOPMENT OF WASTE INCINERATION IN SWEDEN -- Historical Development.Waste Incineration in Sweden Today -- Waste incineration and district heating -- Waste incineration and combined heat and power production -- Waste and Connection to the Material Market -- CONNECTION BETWEEN COUNTRIES IN THE EUROPEAN UNIONVIA LEGISLATION AND TRADE AND THE IMPACTON THE SWEDISH WASTE INCINCERATION -- European Legislation Affecting Energy and Waste -- European Differences in Waste Management and Use of District Heating -- Impact on Waste Incineration in Sweden of Waste Trade with SomeEuropean Countries -- Impact on Waste Incineration of Trade in Electricity -- DISCUSSION OF TWO POLICY INSTRUMENTS -- Introduction of a Tax on Incinerated Waste in Sweden -- Green Electricity Certificates and Waste Incineration -- MODELS AS DECISION SUPPORT -- Models and How to Handle the Double Function of Waste Incineration -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- EXPERIMENTAL ANALYSIS OF A COMBINEDRECOVERY SYSTEM -- ABSTRACT -- INTRODUCTION -- EVAPORATIVE COOLING SYSTEMS -- HEAT PIPE SYSTEMS -- EXPERIMENTAL INSTALLATION -- EXPERIMENTAL MEASUREMENTS -- SENSIBLE HEAT RECOVERED -- Combined System -- Analysis of Results -- Temperature -- Evaporative cooling system -- Analysis of Results -- Heating and cooling mode analysis -- Heat Pipes System -- Analysis of Results -- Temperature -- LATENT HEAT RECOVERED -- Analysis of Results -- Air Flow -- Temperature -- VxT interaction -- TOTAL HEAT RECOVERED -- Evaporative Cooler -- Analysis of Results -- Airflow Analysis -- Temperature -- SUMMARY -- Sensible Heat -- Latent Heat -- Total Heat -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- ENERGY RECOVERY SYSTEMS FROM INDUSTRIALPLANT WASTE: PLANNING OF AN INDUSTRIAL PARKLOCATED IN THE SOUTH OF ITALY -- ABSTRACT -- INTRODUCTION -- 1. A STRATEGY FOR SUSTAINABLE MANAGEMENTOF INDUSTRIAL PARKS -- 1.1. Environmental Qualification of Industrial Parks.1.2. Principles of Industrial Ecology.Energy recovery occurs when the energy that is released from a resource recovery process (i.e., pyrolysis/gasification) is used for another purpose such as to generate steam, fuel or electricity generation. This book examines the energy recovery technologies which use landfill gas to produce energy directly. An overview of a variety of secondary sludge post treatment methods for energy recovery is given, including incineration, gasification, pyrolysis, direct liquefaction, supercritical water oxidation (SCWO) and anaerobic digestion. The several routes that energy recovery can follow from waste are looked at as well, of which the most common is waste direct combustion associated with conventional energy recovery in a steam turbine cycle. Energy recovery in air conditioning systems to promote energy saving and improve environmental quality is also explored in this book.Waste products as fuelWaste products as fuel.662/.87DuBois Edgard1869347Mercier Arthur1869348MiAaPQMiAaPQMiAaPQBOOK9910974499703321Energy recovery4477498UNINA