00671nam0-22002411i-450-990002689190403321000268919FED01000268919(Aleph)000268919FED0100026891920000920d--------km-y0itay50------baENGHandbook of the EEC fourth directive.by Price Waterhouse.Bruxelless.e.s.d.Price,Waterhouse370909ITUNINARICAUNIMARCBK99000268919040332133-6-24-RA935 (DEA)ECAECAHandbook of the EEC fourth directive429154UNINAING0101153nam a2200217 i 4500991003690829707536300719s2019 it m ||| | ita db14372137-39ule_instBibl. Dip.le Aggr. Matematica e Fisica - Sez. FisicaengGennaro, Alessandra786118Eccesso accomodativo ed insufficienza di convergenza :trattamento e studio di un caso. Tesi di Laurea triennale in Ottica e Optometria /laureanda Alessandra Gennaro ; relatori Luigi Seclì e Massimo Di Giulio Lecce :Università del Salento. Dipartimento di Matematica e Fisica Ennio De Giorgi. Corso di Laurea triennale in Ottica e Optometria,a.a. 2018-1942 p. :ill. ;30 cmSeclì, GiulioDi Giulio, Massimo.b1437213731-07-1930-07-19991003690829707536LE006 T123012006000105088le006Autorizza la consultazionegE0.00-no 00000.i1590004630-07-19Eccesso accomodativo ed insufficienza di convergenza1750320UNISALENTOle00630-07-19ma -itait 0004569nam 2200721Ia 450 991097332230332120200520144314.01-139-24871-51-107-23239-21-139-09512-91-280-48550-71-139-22330-597866135804811-139-21850-61-139-22502-21-139-21541-81-139-22159-0(CKB)2550000000082953(EBL)833519(OCoLC)775870074(SSID)ssj0000636641(PQKBManifestationID)11403929(PQKBTitleCode)TC0000636641(PQKBWorkID)10676753(PQKB)10832815(UkCbUP)CR9781139095129(MiAaPQ)EBC833519(Au-PeEL)EBL833519(CaPaEBR)ebr10533253(CaONFJC)MIL358048(PPN)26128665X(EXLCZ)99255000000008295320110815d2012 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierHow groups grow /Avinoam Mann1st ed.Cambridge Cambridge University Press20121 online resource (ix, 199 pages) digital, PDF file(s)London Mathematical Society lecture note series ;395Title from publisher's bibliographic system (viewed on 05 Oct 2015).1-107-65750-4 Includes bibliographical references (p. [187]-194) and index.1Introduction1 --2Some Group Theory15 --2.1Finite Index Subgroups15 --2.2Growth18 --2.3Soluble and Polycyclic Groups25 --2.4Nilpotent Groups27 --2.5Isoperimetric Inequalities32 --3Groups of Linear Growth36 --3.1Linear Growth36 --3.2Linear Growth Functions41 --4The Growth of Nilpotent Groups44 --4.1Polynomial Growth of Nilpotent Groups44 --4.2Groups of Small Degree50 --5The Growth of Soluble Groups56 --5.1Soluble Groups of Polynomial Growth56 --5.2Uniform Exponential Growth of Soluble Groups60 --6Linear Groups63 --7Asymptotic Cones67 --8Groups of Polynomial Growth77 --9Infinitely Generated Groups81 --10Intermediate Growth: Grigorchuk's First Group90 --11More Groups of Intermediate Growth108 --11.1The General Grigorchuk Groups108 --11.2Groups Acting on Regular Trees113 --11.3Groups Defined by Finite Automata115 --11.4Bartholdi-Erschler Groups119 --12Growth and Amenability121 --12.1Amenability and Intermediate Growth121 --12.2tMore Isoperimetric Inequalities127 --13Intermediate Growth and Residual Finiteness131 --14Explicit Calculations136 --14.1The Trefoil Group136 --14.2Wreath Products139 --14.3Free Products with Amalgamations and HNN-Extensions141 --14.4Central Products146 --15The Generating Function148 --16The Growth of Free Products158 --17Conjugacy Growth176 --18Research Problems185.Growth of groups is an innovative new branch of group theory. This is the first book to introduce the subject from scratch. It begins with basic definitions and culminates in the seminal results of Gromov and Grigorchuk and more. The proof of Gromov's theorem on groups of polynomial growth is given in full, with the theory of asymptotic cones developed on the way. Grigorchuk's first and general groups are described, as well as the proof that they have intermediate growth, with explicit bounds, and their relationship to automorphisms of regular trees and finite automata. Also discussed are generating functions, groups of polynomial growth of low degrees, infinitely generated groups of local polynomial growth, the relation of intermediate growth to amenability and residual finiteness, and conjugacy class growth. This book is valuable reading for researchers, from graduate students onward, working in contemporary group theory.London Mathematical Society lecture note series ;395.Group theoryAlgorithmsGroup theory.Algorithms.512.2MAT 200fstubMann Avinoam1937-477391MiAaPQMiAaPQMiAaPQBOOK9910973322303321How groups grow239908UNINA05433nam 2200685Ia 450 991101924450332120200520144314.09786612379468978128237946612823794619780470697795047069779297804706979930470697997(CKB)1000000000687331(EBL)470652(OCoLC)648759902(SSID)ssj0000354189(PQKBManifestationID)11251806(PQKBTitleCode)TC0000354189(PQKBWorkID)10313198(PQKB)11131283(MiAaPQ)EBC470652(Perlego)2759910(EXLCZ)99100000000068733120070503d2008 uy 0engur|n|---|||||txtccrExtended finite element method for fracture analysis of structures /Soheil MohammadiMalden, MA Blackwell Pub.c20081 online resource (282 p.)Description based upon print version of record.9781405170604 1405170603 Includes bibliographical references and index.EXTENDED FINITE ELEMENT METHOD; Contents; 2.5 SOLUTION PROCEDURES FOR K AND G; Dedication; Preface; Nomenclature; Chapter 1 Introduction; 1.1 ANALYSIS OF STRUCTURES; 1.2 ANALYSIS OF DISCONTINUITIES; 1.3 FRACTURE MECHANICS; 1.4 CRACK MODELLING; 1.4.1 Local and non-local models; 1.4.2 Smeared crack model; 1.4.3 Discrete inter-element crack; 1.4.4 Discrete cracked element; 1.4.5 Singular elements; 1.4.6 Enriched elements; 1.5 ALTERNATIVE TECHNIQUES; 1.6 A REVIEW OF XFEM APPLICATIONS; 1.6.1 General aspects of XFEM; 1.6.2 Localisation and fracture; 1.6.3 Composites; 1.6.4 Contact; 1.6.5 Dynamics1.6.6 Large deformation/shells1.6.7 Multiscale; 1.6.8 Multiphase/solidification; 1.7 SCOPE OF THE BOOK; Chapter 2 Fracture Mechanics,a Review; 2.1 INTRODUCTION; 2.2 BASICS OF ELASTICITY; 2.2.1 Stress -strain relations; 2.2.2 Airy stress function; 2.2.3 Complex stress functions; 2.3 BASICS OF LEFM; 2.3.1 Fracture mechanics; 2.3.2 Circular hole; 2.3.3 Elliptical hole; 2.3.4 Westergaard analysis of a sharp crack; 2.4 STRESS INTENSITY FACTOR, K; 2.4.1 Definition of the stress intensity factor; 2.4.2 Examples of stress intensity factors for LEFM; 2.4.3 Griffith theories of strength and energy2.4.4 Brittle material2.4.5 Quasi-brittle material; 2.4.6 Crack stability; 2.4.7 Fixed grip versus fixed load; 2.4.8 Mixed mode crack propagation; 2.5.1 Displacement extrapolation/correlation method; 2.5.2 Mode I energy release rate; 2.5.3 Mode I stiffness derivative/virtual crack model; 2.5.4 Two virtual crack extensions for mixed mode cases; 2.5.5 Single virtual crack extension based on displacement decomposition; 2.5.6 Quarter point singular elements; 2.6 ELASTOPLASTIC FRACTURE MECHANICS (EPFM); 2.6.1 Plastic zone; 2.6.2 Crack tip opening displacements (CTOD); 2.6.3 J integral2.6.4 Plastic crack tip fields2.6.5 Generalisation of J; 2.7 NUMERICAL METHODS BASED ON THE J INTEGRAL; 2.7.1 Nodal solution; 2.7.2 General finite element solution; 2.7.3 Equivalent domain integral (EDI)method; 2.7.4 Interaction integral method; Chapter 3 Extended Finite Element Method for Isotropic Problems; 3.1 INTRODUCTION; 3.2 A REVIEW OF XFEM DEVELOPMENT; 3.3 BASICS OF FEM; 3.3.1 Isoparametric finite elements, a short review; 3.3.2 Finite element solutions for fracture mechanics; 3.4 PARTITION OF UNITY; 3.5 ENRICHMENT; 3.5.1 Intrinsic enrichment; 3.5.2 Extrinsic enrichment3.5.3 Partition of unity finite element method3.5.4 Generalised finite element method; 3.5.5 Extended finite element method; 3.5.6 Hp-clouds enrichment; 3.5.7 Generalisation of the PU enrichment; 3.5.8 Transition from standard to enriched approximation; 3.6 ISOTROPIC XFEM; 3.6.1 Basic XFEM approximation; 3.6.2 Signed distance function; 3.6.3 Modelling strong discontinuous fields; 3.6.4 Modelling weak discontinuous fields; 3.6.5 Plastic enrichment; 3.6.6 Selection of nodes for discontinuity enrichment; 3.6.7 Modelling the crack; 3.7 DISCRETIZATION AND INTEGRATION; 3.7.1 Governing equation3.7.2 XFEM discretizationThis important textbook provides an introduction to the concepts of the newly developed extended finite element method (XFEM) for fracture analysis of structures, as well as for other related engineering applications.One of the main advantages of the method is that it avoids any need for remeshing or geometric crack modelling in numerical simulation, while generating discontinuous fields along a crack and around its tip. The second major advantage of the method is that by a small increase in number of degrees of freedom, far more accurate solutions can be obtained. The method has recenFracture mechanicsFinite element methodFracture mechanics.Finite element method.624.1/76BAU 154fstubUF 3150rvkMohammadi S(Soheil)475363MiAaPQMiAaPQMiAaPQBOOK9911019244503321Extended finite element method for fracture analysis of structures247276UNINA