00873nam--2200337---450 99000183831020331620210907102830.0000183831USA01000183831(ALEPH)000183831USA0100018383120040709d1979----km-y0itay0103----baengGB||||||||001yy<<The>> moment of "Scrutiny"Francis MulhernLondonNLB1979X, 354 p.21 cm20012001001-------2001Scrutiny (Periodico)Storia052MULHERN,Francis564168ITsalbcISBD990001838310203316X.3.B. 2998(II i B 325)88948 L.M.II i BBKUMAMoment of "Scrutiny"949912UNISA03841nam 2200553Ia 450 991096939430332120251116221148.01-60741-414-7(CKB)2560000000069935(EBL)3018517(SSID)ssj0000418011(PQKBManifestationID)11307160(PQKBTitleCode)TC0000418011(PQKBWorkID)10370404(PQKB)11202965(MiAaPQ)EBC3018517(BIP)25773042(EXLCZ)99256000000006993520081124d2009 uy 0engur|n|---|||||txtccrFoundations and applications of variational and perturbation methods /S. Raj Vatsya1st ed.Hauppauge, NY Nova Science Publishersc20091 online resource (349 p.)Description based upon print version of record.1-60692-591-1 Includes bibliographical references (p. [327]-330) and index.Intro -- FOUNDATIONS AND APPLICATIONS OFVARIATIONAL AND PERTURBATIONMETHODS -- FOUNDATIONS AND APPLICATIONS OFVARIATIONAL AND PERTURBATIONMETHODS -- CONTENTS -- PREFACE -- ACKNOWLEDGEMENTS -- I. FOUNDATIONS -- 1. INTEGRATION AND VECTOR SPACES -- 1. I. PRELIMINARIES -- 1. II. INTEGRATION -- 1.II.1. Basic Concepts -- 1.II.2. Integration over Trajectories -- 1. III. VECTOR SPACES -- 2. OPERATORS IN VECTOR SPACES -- 2.I. OPERATORS IN BANACH SPACES -- 2.II. Operators in Hilbert Spaces -- 2.III. Forms in Hilbert Spaces -- 2.IV. Integral Transforms -- 2.V. Differential Operators -- 3. VARIATIONAL METHODS -- 3.I. FORMULATION -- 3.II. CONVERGENCE -- 3.II.1. Basic Results -- 3.II.2. Compact Operators -- 3.II.3. Bounded Operators -- 3.II.4. Semi-Bounded Operators -- 3.III. PADÉ APPROXIMANTS -- 3.III.1. Formulation -- 3.III.2. Representations -- 3.III.3. Convergence And Applications -- 3.IV. MONOTONIC CONVERGENCE -- 3.IV.1. Diagonal Forms -- 3.IV.2. Eigenvalues -- 4. PERTURBATION METHODS -- 4.I. PERTURBED OPERATOR -- 4.II. SPECTRAL PERTURBATION -- 4.II.1. Resolvent and Point Spectrum -- 4.II.2. Continuous Spectrum -- 4.III. SPECTRAL DIFFERENTIATION -- 4.IV. ITERATION -- II. APPLICATIONS -- 5. MATRICES -- 5.I. TRIDIAGONAL MATRICES -- 5.II. STRUCTURED MATRICES -- 6. ATOMIC SYSTEMS -- 6.I. PRELIMINARIES -- 6.II. EIGENVALUES AND CRITICAL POINTS -- 6.II.1. Helium Atom -- 6.II.2. Short Range Potentials -- 6.III. SCATTERING -- 6.III.1. Formulation -- 6.III.2. Born Series -- 6.III.3. Schwinger's Method -- 6.III.4. Hulthén -Kohn Methods -- 6.III.5. Rotated Hamiltonians -- 7. SUPPLEMENTARY EXAMPLES -- 7.I. RAY TOMOGRAPHY -- 7.II. MAXWELL'S EQUATIONS -- 7.III. POSITIVITY LEMMA FOR THE ELLIPTIC OPERATORS -- 7.III.1. Basic Results -- 7.III.2. Applications -- 7.IV. TRANSPORT AND PROPAGATION -- 7.IV.1. Reaction-Diffusion -- 7.IV.2. Heat Transfer.7.IV.3. Radiative Transfer -- 7.IV.4. Turbulent Diffusion -- 7.IV.5. Optical Beam Propagation -- 7.V. QUANTUM THEORY -- REFERENCES -- INDEX.Contents: Preface; Integration and vector spaces; Operators in vector spaces; Variational methods; Perturbation methods; Matrices; Atomic systems; Supplementary examples; References; Index.Perturbation (Mathematics)Perturbation (Quantum dynamics)Variational principlesPerturbation (Mathematics)Perturbation (Quantum dynamics)Variational principles.515/.392Vatsya S. Raj1869352MiAaPQMiAaPQMiAaPQBOOK9910969394303321Foundations and applications of variational and perturbation methods4477503UNINA