05620nam 2200637Ia 450 991096781300332120251117065758.097816112226091611222605(CKB)2670000000089931(EBL)3018820(SSID)ssj0000473627(PQKBManifestationID)12212356(PQKBTitleCode)TC0000473627(PQKBWorkID)10448996(PQKB)11280728(MiAaPQ)EBC3018820(Au-PeEL)EBL3018820(CaPaEBR)ebr10661759(OCoLC)923659204(BIP)43287889(BIP)32187359(EXLCZ)99267000000008993120100824d2011 uy 0engur|n|---|||||txtccrSynchronization in complex networks /Xin Biao Lu and Bu Zhi Qin1st ed.New York Nova Science Publisher'sc20111 online resource (147 p.)Computer networks.Description based upon print version of record.9781617618734 161761873X Includes bibliographical references (p. [123]-133) and index.Intro -- SYNCHRONIZATION IN COMPLEX NETWORKS -- SYNCHRONIZATION IN COMPLEX NETWORKS -- CONTENTS -- PREFACE -- Chapter 1 SUMMARIZATION OF SYNCHRONIZATION IN COMPLEX NETWORK -- Abstract -- 1.1. Introduction -- 1.2. Basic Concept of Network -- 1.2.1. The Graph Description of Network -- 1.2.2. The Average Path Length -- 1.2.3. Clustering Coefficient -- 1.2.4. Betweenness -- 1.2.5. Assortative Coefficient -- 1.3. Complete Synchronization in Complex Network -- 1.3.1. Master Stability Function -- 1.3.2. Synchronization of Un-weighted Networks -- 1.3.3. Synchronization of Weighted Networks -- 1.3.3.1. Adjust Node Degree -- 1.3.3.2. Adjust Coupling Direction and Edge Information -- 1.3.3.3. Optimal Synchronization of Weighted Networks -- 1.3.3.4. Transition from Non-synchronization to Synchronization -- Chapter 2 ADAPTIVE SYNCHRONIZATION OF COMPLEX NETWORKS -- Abstract -- 2.1. Introduction -- 2.2. Adaptive Synchronization with Unknown Network Topologies -- 2.2. Local Synchronization -- 2.2.2. Global Synchronization -- 2.3 Adaptive Synchronization with Known Network Topologies -- 2.3.1. Global Information -- 2.3.2. Local Information -- 2.3.2. Vertex-based Strategy -- 2.3.2.2. Edge-based Strategy -- Chapter 3 CLUSTER SYNCHRONIZATION IN COMPLEX NETWORKS -- Abstract -- 3.1. Introduction -- 3.2. Select Appreciate Coupling Matrix -- 3.3. Add Simple Controllers -- 3.3.1. Local Stability Analysis -- 3.3.2. Global Stability Analysis -- 3.3.3. Simulation Results -- 3.4. Adaptive Cluster Synchronization of Complex Networks -- 3.4.1. Adaptive Strategy in Cluster Synchronization -- 3.4.2. Global Stability Analysis of Cluster Synchronization -- 3.4.3. Simulation Results -- 3.4.3.1. BA Scale-free Network without Noise -- 3.4.3.2. BA Scale-free Network with Noise -- 3.4.3. Nonidentical Oscillators -- Chapter 4 CONTROL OF COMPLEX DYNAMICAL NETWORKS.Abstract -- 4.1. Introduction -- 4.2. Control a General Dynamical Network to a Homogeneous Equilibrium Point -- 4.3. Control a General Dynamical Network to Synchronization State -- 4.4. Controllability of Pinning Control -- 4.5. Control a Network to a Heterogeneous Equilibrium Point -- 4.5.1. Open-loop Constant Control -- 4.5.2. Feedback Pinning Control -- 4.5.2.1. Local Stability Analysis -- 4.5.2.2. Global Stability Analysis -- 4.5.2.3. Simulation Results -- Chapter 5 SYNCHRONIZATION OF TIME VARYING COMPLEX NETWORKS -- Abstract -- 5.1. Introduction -- 5.2. Local Synchronization of Time Varying Complex Networks -- 5.3. Connection Graph Stability Method -- 5.3.1. Stability Analysis of Global Synchronization -- 5.3.2. Application of Connection Graph Stability Method -- 5.3.2.1. Average Model -- 5.3.2.2. Blinking Small World Network -- 5.4. Fast Switching Synchronization of Time Varying Complex Networks -- 5.4.1. Local Synchronization of Complex Networks -- 5.4.2. Global Synchronization of Directed Networks -- 5.4.2.1. Fixed Topology -- 5.4.2.2. Switching Topologies -- 5.4.4.3. Simulation Results -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX -- Blank Page.This book discusses the synchronization in complex networks. At first, the basic concepts of complex networks, including the description of the network, the degree of the node, clustering coefficient, and the average path length are introduced. When the initial states of nodes are near enough to synchronization manifold, the master stability function method is applied to analyze its local stability. However, when the initial states of nodes are randomly distributed, the Lyapunov function method is used to analyze the global stability of synchronization manifold. Furthermore, the connection graph stability method is used to investigate the global stability of synchronization in complex networks with time-varying network topology.Computer NetworksSynchronous data transmission systemsComputer network architecturesSynchronous data transmission systems.Computer network architectures.004.6/5Lu Xin Biao1866355Qin Bu Zhi1866356MiAaPQMiAaPQMiAaPQBOOK9910967813003321Synchronization in complex networks4473747UNINA