08836nam 2200661Ia 450 991096343860332120251116221038.01-61122-537-X(CKB)2560000000068036(EBL)3018828(SSID)ssj0000412852(PQKBManifestationID)12144907(PQKBTitleCode)TC0000412852(PQKBWorkID)10367234(PQKB)10763629(MiAaPQ)EBC3018828(Au-PeEL)EBL3018828(CaPaEBR)ebr10661767(OCoLC)669492463(BIP)27228400(EXLCZ)99256000000006803620090723d2010 uy 0engur|n|---|||||txtccrBiological and environmental applications of gas discharge plasmas /Graciela Brelles-Marino, editor1st ed.New York Nova Science Publishersc20101 online resource (296 p.)Environmental research advances series.Description based upon print version of record.1-60741-945-9 Includes bibliographical references and index.Intro -- BIOLOGICAL AND ENVIRONMENTAL APPLICATIONS OF GAS DISCHARGE PLASMAS -- BIOLOGICAL AND ENVIRONMENTAL APPLICATIONS OF GAS DISCHARGE PLASMAS -- CONTENTS -- PREFACE -- FOREWORD -- ENVIRONMENTAL APPLICATIONS OF NON-THERMAL PLASMAS -- ABSTRACT -- 1. INTRODUCTION -- 2. COMMERCIALLY VIABLE, LARGE-SCALE PLASMA-BASED ENVIRONMENTAL APPLICATIONS -- 2.1. Electrostatic Precipitation -- 2.1.1. Historical Background -- 2.1.2. Main Physical Processes Involved in Electrostatic Precipitation -- 2.1.3. Large Industrial Electrostatic Precipitators -- 2.1.4. Summary -- 2.2. Ozonizers -- 2.2.1. Historical Background -- 2.2.2. Ozone Properties and Applications -- 2.2.3. Ozone Formation in Electrical Discharges -- 2.2.4. Technical Aspects of Large Ozone Generators -- 2.2.5. Future Prospects of Industrial Ozone Generation -- 3. DECOMPOSITION OF VOLATILE ORGANIC COMPOUNDS (VOCS) IN MICROPLASMAS -- 3.1. Experimental Details -- 3.2. VOC Destruction Efficiency -- 3.3. By-Product Formation -- 3.4. Kinetic Studies -- 3.5. SUMMARY -- 4. PULSED ELECTRICAL DISCHARGES IN WATER -- 4.1. Background -- 4.2. Experimental Systems -- 4.3. Selected Experimental Results -- 4.4. Summary -- 5. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- OZONE GENERATION WITH COLD PLASMAS FOR WATER TREATMENT PROCESSES -- ABSTRACT -- I. INTRODUCTION -- II. OZONE AND ITS APPLICATIONS -- III.1. Ozone Generation through Gas Discharges -- III.2. Ozone Formation in Dielectric Barrier Discharges -- III.3. Kinetics of Ozone Formation -- IV. OZONE GENERATOR CONFIGURATIONS -- V. OPTIMIZATION OF LARGE-SCALE OZONE GENERATORS -- ACKNOWLEDGMENTS -- REFERENCES -- MICROSCOPY AS AN ANALYSIS TOOL FOR STUDYING PLASMA APPLICATIONS -- ABSTRACT -- INTRODUCTION -- OPTICAL MICROSCOPY -- TRANSMISSION ELECTRON AND SCANNING ELECTRON MICROSCOPY -- SCANNING PROBE MICROSCOPY -- OTHER MICROSCOPIC TECHNIQUES -- CONCLUSION.ACKNOWLEDGMENTS -- REFERENCES -- BACTERIAL BIOFILM INACTIVATION BY GAS-DISCHARGE PLASMAS -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Biofilms -- 1.2. The Problem of Biofilm Inactivation and the Potential Use of Plasma -- 2. BIOFILMS AND ORAL HEALTH -- 3. PLASMA FOR FOOD SAFETY CONTROL - BIOFILMS IN FOOD -- 4. RESULTS WITH OTHER MODEL ORGANISMS -- 5. RESULTS FROM OUR LABORATORY -- 6. SOME CONCERNS -- 7. FUTURE PERSPECTIVES AND CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- NON-EQUILIBRIUM PLASMAS IN BIOLOGY AND MEDICINE -- ABSTRACT -- 1. DIRECT NON-THERMAL PLASMA MEDICINE VERSUS CONVENTIONAL THERMAL AND JET PLASMA TREATMENT OF LIVING TISSUE -- 1.1. Sterilization of Non-Living Objects for Medical Applications: A Review -- 1.2. Plasma-Assisted Wound Healing and Tissue Regeneration: Discharge Systems for Air-Plasma Surgery and Nitrogen Oxide (NO) Therapy -- Pulmonology -- Phthisiology -- Traumatology and Orthopedics -- Gynecology -- Dentistry -- Maxillofacial Surgery -- Ophthalmology -- Otorhinolaryngology -- Dermatology -- Gastroenterology -- Purulent Peritonitis -- 1.3. Non-Thermal Plasma Treatment of Various Diseases -- 1.3.1. Non-Thermal Plasma Treatment of Melanoma Skin Cancer -- 1.3.2. Non-Equilibrium Plasma Treatment of Corneal Infections -- 1.3.3. Non-Equilibrium Plasma Treatment of Dental Cavities -- 1.3.4. Non-Equilibrium Plasma Use for Skin Regeneration -- 1.3.5. Non-Equilibrium Plasma Treatment of Chronic Foot and Leg Ulcers -- 1.4. Non-Damaging Plasma Treatments -- 2. DEVICE FOR DIRECT NON-DAMAGING APPLICATION OF PLASMA TO LIVING TISSUE: FLOATING ELECTRODE DIELECTRIC BARRIER DISCHARGE (FE-DBD) -- 2.1. Principle of Operation of the Floating Electrode Dielectric Barrier Discharge -- 2.2. Electrodes for Observation and Analysis of Plasma and for Application to Cells, Tissues, and Organs, among Others.2.3. Non-Equilibrium Plasma Power Supply Systems -- 2.4. Safety of FE-DBD Plasma Application to Biological Surfaces -- 3. DIRECT TREATMENT BY NON-EQUILIBRIUM PLASMA OF LIVING TISSUE WITHOUT DAMAGE TO THIS TISSUE: TOXICITY TRIALS -- 3.1. Skin Toxicity Trials on Human Cadaver Tissue -- 3.2. Skin Toxicity Trials on Live Hairless Mice -- 3.3. Skin Toxicity Trials on Live Regular Swine -- 3.4. Wound Toxicity Trials on Live Regular Swine -- 3.5. FE-DBD Treatment of Living Tissue: Next Steps -- 4. DIRECT NON-EQUILIBRIUM PLASMA APPLICATION FOR SKIN STERILIZATION -- EFFECTIVENESS OF DIRECT VERSUS INDIRECT (JET) PLASMA TREATMENT -- 4.1. Direct and Indirect Sterilization of Surfaces -- 4.2. Direct and Indirect FE-DBD Plasma Treatment -- 4.3. Effects of UV Radiation, Applied Electric Field, Thermal Energy, and Other Indirect Plasma Effects -- 4.4. Direct Plasma Inactivation of Bacteria -- 5. CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- DECONTAMINATION OF CHEMICAL AND MICROBIAL TARGETS USING GLIDING ELECTRICAL DISCHARGE -- ABSTRACT -- 1. INTRODUCTION -- 2. THE ENGINEERING OF GLIDARC REACTORS -- 2.1. Electrical Discharges -- 2.2. Characterization of Glidarc Discharges -- 2.3. Power Supplies for Electrical Discharge Reactors -- 2.4. Electrochemical Reactors of the Glidarc Type -- 2.5. Quality Indicators for Cold-Plasma Technologies -- 3. CHEMICAL REACTIVITY OF GLIDARC GENERATED SPECIES -- 3.1. Species Identified in the Glidarc Reactor -- 3.2. Chemical Properties of the Species Concerned: Chemical Effects on Liquid Targets -- 3.3. Temporal Post-Discharge Reactions -- 4. APPLICATIONS TO ENVIRONMENTAL POLLUTION ABATEMENT -- 4.1. Gas Pollutants -- 4.2. Pure Liquid Organic Pollutants -- 4.3. Solutes in Aqueous Media -- 4.4. Kinetics -- 4.5. Temporal Post Discharge Reactions -- 5. APPLICATION OF GLIDARC TECHNOLOGY TO MICROBIAL INACTIVATION.5.1. Decontamination under Direct Discharge and Temporal Post-Discharge Reactions -- 5.2. Kinetics of Inactivation -- 5.3. Influence of Biological Parameters on Glidarc Decontamination -- 5.4. Lethal Agents for Microbial Decontamination Using Glidarc -- 6. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- DIELECTRIC BARRIER DISCHARGE: A VERSATILE TOOL FOR BIOLOGICAL APPLICATIONS -- ABSTRACT -- INTRODUCTION -- 1. PLASMA TREATMENT OF SEEDS -- 1.1. Materials and Methods -- 1.2. Results -- 1.3. Conclusion -- 2. PLASMA TREATMENT OF WOOD -- 2.1. Materials and Methods -- 2.2. Results -- 2.3. Conclusion -- 3. MEDICAL APPLICATIONS OF DIELECTRIC BARRIER DISCHARGE PLASMA -- 3.1. Materials and Methods -- 3.2. Results -- Temperature -- Gas Species -- Radiation -- Electric Current -- 3.3. Conclusion -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX.The emerging field of biological and environmental applications of plasma represents an inter/multidisciplinary effort among microbiologists, biologists, physicists, engineers and more recently, physicians. The book gives an overview of some of the most exciting present and future applications of gas discharge plasmas.Environmental research advances series.Medical wastesSafety measuresPlasma (Ionized gases)Industrial applicationsPlasma (Ionized gases)Environmental aspectsEnvironmental engineeringMedical wastesSafety measures.Plasma (Ionized gases)Industrial applications.Plasma (Ionized gases)Environmental aspects.Environmental engineering.363.72/88Brelles-Marino Graciela1861088MiAaPQMiAaPQMiAaPQBOOK9910963438603321Biological and environmental applications of gas discharge plasmas4467126UNINA