04972oam 22005053 450 991096265650332120240912154143.09781119050223(electronic bk.)9781119050124(MiAaPQ)EBC4514451(Au-PeEL)EBL4514451(CaPaEBR)ebr11211140(OCoLC)930026871(MiAaPQ)EBC7104379(CKB)17690508600041(BIP)54942225(BIP)50961676(EXLCZ)991769050860004120220831d2016 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFundamentals of Mechanical Vibrations1st ed.Chicester :John Wiley & Sons, Incorporated,2016.©2016.1 online resource (580 pages)Wiley-ASME Press Ser.Print version: Cai, Liang-Wu Fundamentals of Mechanical Vibrations Chicester : John Wiley & Sons, Incorporated,c2016 9781119050124 Intro -- Title Page -- Copyright -- Table of Contents -- Series Preface -- Preface -- Chapter 1: A Crash Course on Lagrangian Dynamics -- 1.1 Objectives -- 1.2 Concept of "Equation of Motion" -- 1.3 Generalized Coordinates -- 1.4 Admissible Variations -- 1.5 Degrees of Freedom -- 1.6 Virtual Work and Generalized Forces -- 1.7 Lagrangian -- 1.8 Lagrange's Equation -- 1.9 Procedure for Deriving Equation(s) of Motion -- 1.10 Worked Examples -- 1.11 Linearization of Equations of Motion -- 1.12 Chapter Summary -- Problems -- Chapter 2: Vibrations of Single-DOF Systems -- 2.1 Objectives -- 2.2 Types of Vibration Analyses -- 2.3 Free Vibrations of Undamped System -- 2.4 Free Vibrations of Damped Systems -- 2.5 Using Normalized Equation of Motion -- 2.6 Forced Vibrations I: Steady-State Responses -- 2.7 Forced Vibrations II: Transient Responses -- 2.8 Chapter Summary -- Problems -- Chapter 3: Lumped-Parameter Modeling -- 3.1 Objectives -- 3.2 Modeling -- 3.3 Idealized Elements -- 3.4 Lumped-Parameter Modeling of Simple Components and Structures -- 3.5 Alternative Methods -- 3.6 Examples with Lumped-Parameter Models -- 3.7 Chapter Summary -- Problems -- Chapter 4: Vibrations of Multi-DOF Systems -- 4.1 Objectives -- 4.2 Matrix Equation of Motion -- 4.3 Modal Analysis: Natural Frequencies and Mode Shapes -- 4.4 Free Vibrations -- 4.5 Eigenvalues and Eigenvectors -- 4.6 Coupling, Decoupling, and Principal Coordinates -- 4.7 Forced Vibrations I: Steady-State Responses -- 4.8 Forced Vibrations II: Transient Responses -- 4.9 Chapter Summary -- Problems -- Reference -- Chapter 5: Vibration Analyses Using Finite Element Method -- 5.1 Objectives -- 5.2 Introduction to Finite Element Method -- 5.3 Finite Element Analyses of Beams -- 5.4 Vibration Analyses Using SOLIDWORKS -- 5.5 Chapter Summary -- Problems -- Appendix A: Review of Newtonian Dynamics.A.1 Kinematics -- A.2 Kinetics -- Appendix B: A Primer on MATLAB -- B.1 Matrix Computations -- B.2 Plotting -- Appendix C: Tables of Laplace Transform -- C.1 Properties of Laplace Transform -- C.2 Function Transformations -- Index -- End User License Agreement.This introductory book covers the most fundamental aspects of linear vibration analysis for mechanical engineering students and engineers. Consisting of five major topics, each has its own chapter and is aligned with five major objectives of the book. It starts from a concise, rigorous and yet accessible introduction to Lagrangian dynamics as a tool for obtaining the governing equation(s) for a system, the starting point of vibration analysis. The second topic introduces mathematical tools for vibration analyses for single degree-of-freedom systems. In the process, every example includes a section Exploring the Solution with MATLAB. This is intended to develop student's affinity to symbolic calculations, and to encourage curiosity-driven explorations. The third topic introduces the lumped-parameter modeling to convert simple engineering structures into models of equivalent masses and springs. The fourth topic introduces mathematical tools for general multiple degrees of freedom systems, with many examples suitable for hand calculation, and a few computer-aided examples that bridges the lumped-parameter models and continuous systems. The last topic introduces the finite element method as a jumping point for students to understand the theory and the use of commercial software for vibration analysis of real-world structures.Wiley-ASME Press Ser.Vibration - Mathematical modelsVibration - Mathematical models.621.8/11Cai Liang-Wu1861221MiAaPQMiAaPQMiAaPQ9910962656503321Fundamentals of Mechanical Vibrations4467312UNINA