00915nam a2200253 i 450099100195050970753620020508184115.0931027s1979 it ||| | ita b10937079-39ule_instPARLA151769ExLDip.to FilosofiaitaScrimieri, Giorgio437691Analitica matematica e fenomenologia in Edmund Husserl /Giorgio ScrimieriBari :Edizioni Levante,1979386 p. ;23 cm.FenomenologiaHUSSERL, Edmund.Matematica.b1093707921-09-0628-06-02991001950509707536LE005 MF 2 M 2412005000228377le005-E0.00-l- 01010.i1104341628-06-02Analitica matematica e fenomenologia in Edmund Husserl919589UNISALENTOle00501-01-93ma -itait 0101103nam 22003853 450 991083073160332120240205120216.03-527-80608-33-527-80605-9(CKB)4330000000010830(MiAaPQ)EBC31102310(Au-PeEL)EBL31102310(EXLCZ)99433000000001083020240205d2024 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierMuon Spin Spectroscopy Methods and Applications in Chemistry and Materials Science1st ed.Newark :John Wiley & Sons, Incorporated,2024.©2024.1 online resource (258 pages)3-527-34236-2 Fleming Donald G1593259McKenzie Iain1593260Percival Paul W1593261MiAaPQMiAaPQMiAaPQBOOK9910830731603321Muon Spin Spectroscopy3913300UNINA04819nam 22006015 450 991096107300332120250813223217.01-4612-0941-210.1007/978-1-4612-0941-6(CKB)3400000000089331(SSID)ssj0001297419(PQKBManifestationID)11986996(PQKBTitleCode)TC0001297419(PQKBWorkID)11363416(PQKB)10635506(DE-He213)978-1-4612-0941-6(MiAaPQ)EBC3073435(PPN)237994321(EXLCZ)99340000000008933120121227d1991 u| 0engurnn|008mamaatxtccrLinear Algebraic Groups /by Armand Borel2nd ed. 1991.New York, NY :Springer New York :Imprint: Springer,1991.1 online resource (XI, 290 p.) Graduate Texts in Mathematics,2197-5612 ;126Bibliographic Level Mode of Issuance: Monograph0-387-97370-2 1-4612-6954-7 Includes bibliographical references and indexes.AG—Background Material From Algebraic Geometry -- §1. Some Topological Notions -- §2. Some Facts from Field Theory -- §3. Some Commutative Algebra -- §4. Sheaves -- §5. Affine K-Schemes, Prevarieties -- §6. Products; Varieties -- §7. Projective and Complete Varieties -- §8. Rational Functions; Dominant Morphisms -- §9. Dimension -- §10. Images and Fibres of a Morphism -- §11. k-structures on K-Schemes -- §12. k-Structures on Varieties -- §13. Separable points -- §14. Galois Criteria for Rationality -- §15. Derivations and Differentials -- §16. Tangent Spaces -- §17. Simple Points -- §18. Normal Varieties -- References -- I—General Notions Associated With Algebraic Groups -- §1. The Notion of an Algebraic Groups -- §2. Group Closure; Solvable and Nilpotent Groups -- §3. The Lie Algebra of an Algebraic Group -- §4. Jordan Decomposition -- II — Homogeneous Spaces -- §5. Semi-Invariants -- §6. Homogeneous Spaces -- §7. Algebraic Groups in Characteristic Zero -- III Solvable Groups -- §8. Diagonalizable Groups and Tori -- §9. Conjugacy Classes and Centralizers of Semi-Simple Elements -- §10. Connected Solvable Groups -- IV—Borel Subgroups; Reductive Groups -- §11. Borel Subgroups -- §12. Cartan Subgroups; Regular Elements -- §13. The Borel Subgroups Containing a Given Torus -- §14. Root Systems and Bruhat Decomposition in Reductive Groups -- V—Rationality Questions -- §15. Split Solvable Groups and Subgroups -- §16. Groups over Finite Fields -- §17. Quotient of a Group by a Lie Subalgebra -- §18. Cartan Subgroups over the Groundfield. Unirationality. Splitting of Reductive Groups -- §19. Cartan Subgroups of Solvable Groups -- §20. Isotropic Reductive Groups -- §21. Relative Root System and Bruhat Decomposition for Isotropic Reductive Groups -- §22. Central Isogenies -- §23. Examples -- §24. Survey of Some Other Topics -- A. Classification -- B. Linear Representations -- C. Real Reductive Groups -- References for Chapters I to V -- Index of Definition -- Index of Notation.This book is a revised and enlarged edition of "Linear Algebraic Groups", published by W.A. Benjamin in 1969. The text of the first edition has been corrected and revised. Accordingly, this book presents foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. After establishing these basic topics, the text then turns to solvable groups, general properties of linear algebraic groups and Chevally's structure theory of reductive groups over algebraically closed groundfields. The remainder of the book is devoted to rationality questions over non-algebraically closed fields. This second edition has been expanded to include material on central isogenies and the structure of the group of rational points of an isotropic reductive group. The main prerequisite is some familiarity with algebraic geometry. The main notions and results needed are summarized in a chapter with references and brief proofs.Graduate Texts in Mathematics,2197-5612 ;126Topological groupsLie groupsTopological Groups and Lie GroupsTopological groups.Lie groups.Topological Groups and Lie Groups.512.55512.482Borel Armandauthttp://id.loc.gov/vocabulary/relators/aut45077MiAaPQMiAaPQMiAaPQBOOK9910961073003321Linear algebraic groups79356UNINA