02658nam 2200529Ia 450 991095824280332120200520144314.001915189729780191518973(MiAaPQ)EBC7033857(CKB)24235106400041(MiAaPQ)EBC3052735(Au-PeEL)EBL3052735(CaPaEBR)ebr10272765(CaONFJC)MIL198999(OCoLC)63294235(OCoLC)36590083(FINmELB)ELB163930(Au-PeEL)EBL7033857(OCoLC)1336405499(EXLCZ)992423510640004119970313d1997 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierNaturalism in mathematics /Penelope Maddy1st ed.Oxford Clarendon Press ;New York Oxford University Press1997viii, 254 pIncludes bibliographical references (p. [235]-247) and index.Intro -- Preface -- Contents -- PART I: THE PROBLEM -- 1. The Origins of Set Theory -- 2. Set Theory as a Foundation -- 3. The Standard Axioms -- 4. Independent Questions -- 5. New Axiom Candidates -- 6. V = L -- PART II: REALISM -- 1. Gödelian Realism -- 2. Quinean Realism -- 3. Set Theoretic Realism -- 4. A Realist's Case against V = L -- 5. Hints of Trouble -- 6. Indispensability and Scientific Practice -- 7. Indispensability and Mathematical Practice -- PART III: NATURALISM -- 1. Wittgensteinian Anti-Philosophy -- 2. A Second Gödelian Theme -- 3. Quinean Naturalism -- 4. Mathematical Naturalism -- 5. The Problem Revisited -- 6. A Naturalist's Case against V = L -- Conclusion -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z.Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favour of another approach--naturalism. Penelope Maddy defines naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory.MathematicsPhilosophyNaturalismMathematicsPhilosophy.Naturalism.510/.1Maddy Penelope536645MiAaPQMiAaPQMiAaPQBOOK9910958242803321Naturalism in mathematics4465294UNINA