02658nam 2200529Ia 450 991095824280332120200520144314.001915189729780191518973(MiAaPQ)EBC7033857(CKB)24235106400041(MiAaPQ)EBC3052735(Au-PeEL)EBL3052735(CaPaEBR)ebr10272765(CaONFJC)MIL198999(OCoLC)63294235(OCoLC)36590083(FINmELB)ELB163930(Au-PeEL)EBL7033857(OCoLC)1336405499(EXLCZ)992423510640004119970313d1997 uy 0engur|||||||||||txtrdacontentcrdamediacrrdacarrierNaturalism in mathematics /Penelope Maddy1st ed.Oxford Clarendon Press ;New York Oxford University Press1997viii, 254 pIncludes bibliographical references (p. [235]-247) and index.Intro -- Preface -- Contents -- PART I: THE PROBLEM -- 1. The Origins of Set Theory -- 2. Set Theory as a Foundation -- 3. The Standard Axioms -- 4. Independent Questions -- 5. New Axiom Candidates -- 6. V = L -- PART II: REALISM -- 1. Gödelian Realism -- 2. Quinean Realism -- 3. Set Theoretic Realism -- 4. A Realist's Case against V = L -- 5. Hints of Trouble -- 6. Indispensability and Scientific Practice -- 7. Indispensability and Mathematical Practice -- PART III: NATURALISM -- 1. Wittgensteinian Anti-Philosophy -- 2. A Second Gödelian Theme -- 3. Quinean Naturalism -- 4. Mathematical Naturalism -- 5. The Problem Revisited -- 6. A Naturalist's Case against V = L -- Conclusion -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z.Naturalism in Mathematics investigates how the most fundamental assumptions of mathematics can be justified. One prevalent philosophical approach to the problem--realism--is examined and rejected in favour of another approach--naturalism. Penelope Maddy defines naturalism, explains the motivation for it, and shows how it can be successfully applied in set theory.MathematicsPhilosophyNaturalismMathematicsPhilosophy.Naturalism.510/.1Maddy Penelope536645MiAaPQMiAaPQMiAaPQBOOK9910958242803321Naturalism in mathematics4465294UNINA03453nam 22006135 450 991083506260332120251113190651.09783031425257303142525110.1007/978-3-031-42525-7(MiAaPQ)EBC31137052(Au-PeEL)EBL31137052(DE-He213)978-3-031-42525-7(CKB)30327224000041(OCoLC)1420919211(EXLCZ)993032722400004120240210d2023 u| 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierThe Riemann Problem in Continuum Physics /by Philippe G. LeFloch, Mai Duc Thanh1st ed. 2023.Cham :Springer International Publishing :Imprint: Springer,2023.1 online resource (410 pages)Applied Mathematical Sciences,2196-968X ;2199783031425240 3031425243 1 Overview of this monograph -- 2 Models arising in fluid and solid dynamics -- 3 Nonlinear hyperbolic systems of balance laws -- 4 Riemann problem for ideal fluids -- 5 Compressible fluids governed by a general equation of state -- 6 Nonclassical Riemann solver with prescribed kinetics. The hyperbolic regime -- 7 Nonclassical Riemann solver with prescribed kinetics. The hyperbolic-elliptic regime -- 8 Compressible fluids in a nozzle with discontinuous cross-section. Isentropic flows -- 9 Compressible fluids in a nozzle with discontinuous cross-section. General flows -- 10 Shallow water flows with discontinuous topography -- 11 Shallow water flows with temperature gradient -- 12 Baer-Nunziato model of two-phase flows -- References -- Index.This monograph provides a comprehensive study of the Riemann problem for systems of conservation laws arising in continuum physics. It presents the state-of-the-art on the dynamics of compressible fluids and mixtures that undergo phase changes, while remaining accessible to applied mathematicians and engineers interested in shock waves, phase boundary propagation, and nozzle flows. A large selection of nonlinear hyperbolic systems is treated here, including the Saint-Venant, van der Waals, and Baer-Nunziato models. A central theme is the role of the kinetic relation for the selection of under-compressible interfaces in complex fluid flows. This book is recommended to graduate students and researchers who seek new mathematical perspectives on shock waves and phase dynamics.Applied Mathematical Sciences,2196-968X ;219MathematicsData processingMathematical physicsFluid mechanicsComputational Mathematics and Numerical AnalysisMathematical PhysicsEngineering Fluid DynamicsMathematicsData processing.Mathematical physics.Fluid mechanics.Computational Mathematics and Numerical Analysis.Mathematical Physics.Engineering Fluid Dynamics.518LeFloch Philippe G622141Thanh Mai Duc1740940MiAaPQMiAaPQMiAaPQBOOK9910835062603321Riemann Problem in Continuum Physics4208925UNINA