01254nam0 22003011i 450 UON0043225320231205104912.868978-38-629-0098-520131022d2015 |0itac50 bagerDE|||| |||||Kimatengo - WörterbuchP. Johannes HäflingerMuenchenLincom2015P.131-214 21 cm001UON004518602001 Lincom Orientalia29LINGUA MATENGOLessicoUONC071603FIDEMünchenUONL003025496.3LINGUE NIGER-CONGO E KORDOFANIAN21HÄGLINGERJohannes P.UONV226062711864Lincom EuropaUONV253650650ITSOL20240220RICASIBA - SISTEMA BIBLIOTECARIO DI ATENEOUONSIUON00432253SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI AOR LING KK-B a 010 SI 13089 7 010 SIBA - SISTEMA BIBLIOTECARIO DI ATENEOSI2013919 1J 20131022 Kimatengo - Wörterbuch1336275UNIOR03745nam 22006375 450 991095499760332120250811101121.01-4757-3837-410.1007/978-1-4757-3837-7(CKB)2660000000022103(SSID)ssj0000934498(PQKBManifestationID)11492308(PQKBTitleCode)TC0000934498(PQKBWorkID)10930819(PQKB)10800123(DE-He213)978-1-4757-3837-7(MiAaPQ)EBC3085819(EXLCZ)99266000000002210320130125d1993 u| 0engurnn|008mamaatxtccrA Logical Approach to Discrete Math /by David Gries, Fred B. Schneider1st ed. 1993.New York, NY :Springer New York :Imprint: Springer,1993.1 online resource (XVI, 516 p.) Monographs in Computer Science,2512-5486Bibliographic Level Mode of Issuance: Monograph1-4419-2835-9 0 Using Mathematics -- 1 Textual Substitution, Equality, and Assignment -- 2 Boolean Expressions -- 3 Propositional Calculus -- 4 Relaxing the Proof Style -- 5 Applications of Propositional Calculus -- 6 Hilbert-style Proofs -- 7 Formal Logic -- 8 Quantification -- 9 Predicate Calculus -- 10 Predicates and Programming -- 11 A Theory of Sets -- 12 Mathematical Induction -- 13 A Theory of Sequences -- 14 Relations and Functions -- 15 A Theory of Integers -- 16 Combinatorial Analysis -- 17 Recurrence Relations -- 18 Modern Algebra -- 19 A Theory of Graphs -- 20 Infinite Sets -- References -- Theorems of the propositional and predicate calculi.This text attempts to change the way we teach logic to beginning students. Instead of teaching logic as a subject in isolation, we regard it as a basic tool and show how to use it. We strive to give students a skill in the propo sitional and predicate calculi and then to exercise that skill thoroughly in applications that arise in computer science and discrete mathematics. We are not logicians, but programming methodologists, and this text reflects that perspective. We are among the first generation of scientists who are more interested in using logic than in studying it. With this text, we hope to empower further generations of computer scientists and math ematicians to become serious users of logic. Logic is the glue Logic is the glue that binds together methods of reasoning, in all domains. The traditional proof methods -for example, proof by assumption, con tradiction, mutual implication, and induction- have their basis in formal logic. Thus, whether proofs are to be presented formally or informally, a study of logic can provide understanding.Monographs in Computer Science,2512-5486Computer scienceMathematicsDiscrete mathematicsComputer arithmetic and logic unitsComputer scienceDiscrete Mathematics in Computer ScienceArithmetic and Logic StructuresComputer ScienceComputer scienceMathematics.Discrete mathematics.Computer arithmetic and logic units.Computer science.Discrete Mathematics in Computer Science.Arithmetic and Logic Structures.Computer Science.004.0151Gries David944Schneider Fred BPQKBBOOK9910954997603321Logical approach to discrete math1502266UNINA